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Benchmarking algorithms for gene regulatory
network inference from single-cell
transcriptomic data

Aditya Pratapa®', Amogh P. Jalihal ©2, Jeffrey N. Law®?, Aditya Bharadwaj' and T. M. Murali®™

We present a systematic evaluation of state-of-the-art algorithms for inferring gene regulatory networks from single-cell tran-
scriptional data. As the ground truth for assessing accuracy, we use synthetic networks with predictable trajectories, litera-
ture-curated Boolean models and diverse transcriptional regulatory networks. We develop a strategy to simulate single-cell
transcriptional data from synthetic and Boolean networks that avoids pitfalls of previously used methods. Furthermore, we col-
lect networks from multiple experimental single-cell RNA-seq datasets. We develop an evaluation framework called BEELINE.
We find that the area under the precision-recall curve and early precision of the algorithms are moderate. The methods are bet-
ter in recovering interactions in synthetic networks than Boolean models. The algorithms with the best early precision values
for Boolean models also perform well on experimental datasets. Techniques that do not require pseudotime-ordered cells are
generally more accurate. Based on these results, we present recommendations to end users. BEELINE will aid the development

of gene regulatory network inference algorithms.

to trace cellular lineages during differentiation and to iden-

tify new cell types'”. A central question that arises now is
whether we can discover the gene regulatory networks (GRNs)
that control cellular differentiation and drive transitions from
one cell type to another. In such a GRN, each edge connects a
transcription factor (TF) to a gene it regulates. Ideally, the edge
is directed from the TF to the target gene, represents direct
rather than indirect regulation and corresponds to activation
or inhibition.

Single-cell expression data are especially promising for comput-
ing GRNs because, unlike bulk transcriptomic data, they do not
obscure biological signals by averaging over all the cells in a sample.
However, these data have features that pose significant difficulties;
for example, substantial cellular heterogeneity’, cell-to-cell variation
in sequencing depth, the high sparsity caused by dropouts* and cell-
cycle-related effects’. Despite these challenges, over a dozen meth-
ods have been developed or used to infer GRNs from single-cell
data®". An experimentalist seeking to analyze a new dataset faces
a daunting task in selecting an appropriate inference method since
there are no widely accepted ground-truth datasets for assessing
algorithm accuracy and the criteria for evaluation and comparison
of methods are varied.

We have developed BEELINE, a comprehensive evaluation
framework to assess the accuracy, robustness and efficiency of
GRN inference techniques for single-cell gene expression data
based on well-defined benchmark datasets (Fig. 1). BEELINE
incorporates 12 diverse GRN inference algorithms. It provides an
easy-to-use and uniform interface to each method in the form of a
Docker image. BEELINE implements several measures for estimat-
ing and comparing the accuracy, stability and efficiency of these
algorithms. Thus, BEELINE facilitates reproducible, rigorous and
extensible evaluations of GRN inference methods for single-cell
gene expression data.

S ingle-cell RNA-sequencing technology has made it possible

Results
Overview of algorithms. We surveyed the literature and bioRxiv
preprints for papers that either published a new GRN inference algo-
rithm or used an existing approach. We ignored methods that did
not assign weights or ranks to the interactions, required additional
datasets or supervision, or sought to discover cell-type-specific net-
works. We selected 12 algorithms using these criteria (Methods).
We used BEELINE to evaluate these approaches on over 400
simulated datasets (across six synthetic networks and four curated
Boolean models) and five experimental human or mouse single-
cell RNA-seq datasets. Since eight algorithms require pseudotime-
ordered cells, we used datasets (both simulated and real) that focus
on cell differentiation and development, processes in which there is
a meaningful temporal progression of cell states. We did not study
GRNs relevant to other biological processes; for example, changes in
disease states or differences among cell types.

Datasets from synthetic networks. Our motivations for using
synthetic networks were two-fold. First, we wanted to use a known
GRN that could serve as the ground truth. Second, we desired to
create in silico single-cell gene expression datasets that were isolated
from any limitations of pseudotime inference algorithms. Therefore,
we started with six synthetic networks (Supplementary Fig. 1a and
Supplementary Table 1). Simulating these networks should pro-
duce a variety of different trajectories seen in differentiating and
developing cells®. Several recent studies on GRN inference'*'*!"?1-*2
have used GeneNetWeaver” to create in silico single-cell gene
expression datasets. However, when we simulated the six synthetic
networks using GeneNetWeaver (Methods), we observed no dis-
cernible trajectories in the two-dimensional projections of these
data (Supplementary Fig. 1d).

We therefore used our BoolODE approach (Methods) to simu-
late these networks. For each gene in a GRN, BoolODE requires a
Boolean function that specifies how that gene’s regulators combine to
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Fig. 1| An overview of the BEELINE evaluation framework. We apply GRN inference algorithms to three types of data: datasets from synthetic networks,
datasets from curated Boolean models from the literature and experimental single-cell transcriptional measurements. We process each dataset through a
uniform pipeline: preprocessing, Docker containers for 12 GRN inference algorithms, parameter estimation, postprocessing and evaluation. We compare
algorithms based on accuracy (AUPRC and early precision), stability of results (across simulations, in the presence of dropouts and across algorithms),

analysis of network motifs and scalability.

control its state. We represent each Boolean function as a truth table,
which we convert into a nonlinear ordinary differential equation
(ODE). This approach provides a reliable method to capture the logi-
cal relationships among the regulators precisely in the components
of the ODE. We add noise terms to make the equation stochastic***".

For each network, we applied BoolODE by sampling ODE
parameters ten times and generating 5,000 simulations per param-
eter set (Methods). We created five datasets per parameter set, one
each with 100, 200, 500, 2,000 and 5,000 cells by sampling one cell
per simulation, to obtain 50 different expression datasets. Analyzing
the two-dimensional projections of these simulations reassured us
that BoolODE was successful in correctly simulating the network
models (Supplementary Fig. 1b,c and Supplementary Note 1.1).

Setting each network as the ground truth, we executed the 12
algorithms on every one of the 50 simulated datasets. For those GRN
inference methods that required time information, we provided the
simulation time at which we sampled each cell. For the bifurcating,
bifurcating converging and trifurcating networks, we ran the algo-
rithms that need time information on each trajectory individually
and combined the outputs (Methods). Six algorithms required one or
more parameters to be specified. We performed a parameter sweep
to determine the values that gave the highest median area under the
precision-recall curve (AUPRC) (Supplementary Note 1.2).

For each network-algorithm pair, Fig. 2 displays the median
AUPRC ratio (the AUPRC divided by that of a random predictor).
Supplementary Figs. 2 and 3 show the box plots of AUPRC and area
under the receiver operating characteristic curve (AUROC) val-
ues. The methods performed best for the linear network: 10 out of
12 algorithms had a median AUPRC ratio greater than 2.0. Seven
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methods had a median AUPRC ratio greater than 5.0 for the linear
long network. The cycle, bifurcating converging, bifurcating and
trifurcating networks were progressively harder to infer, with no
algorithm achieving an AUPRC ratio of two or more on the last net-
work. Single-cell regularized inference using time-stamped expres-
sion profiles (SINCERITIES) obtained the highest median AUPRC
ratio for four out of the six networks. Single-cell inference of net-
works using Granger ensembles (SINGE) had the highest median
AUPRC ratio for cycle and partial information decomposition and
context (PIDC) for trifurcating.

We examined the effect of the number of cells on AUPRC by
comparing the values for 100, 200, 500 and 2,000 cells to those
for 5,000 cells (Supplementary Note 1.3). As the number of cells
increased from 100 to 500, the number of algorithms with signifi-
cantly lower AUPRC values in comparison to 5,000 cells decreased
from seven to four. The number of cells had no significant effect
on five algorithms: gene network inference with ensemble of trees
(GENIE3), GRN variational Bayesian expectation-maximization
(GRNVBEM), lag-based expression association for pseudotime-
series (LEAP), single-cell network synthesis (SCNS) and SCODE.

To examine the stability of the results, we considered the GRNs
formed by the k edges with the highest ranks, with k set to the num-
ber of edges in each synthetic network, computed the Jaccard indi-
ces of all pairs of GRNSs, and recorded the medians of these values
(Fig. 2 and Methods). While SINCERITIES, SINGE and SCRIBE had
the three highest median-of-median AUPRC ratios, the networks
they predicted were relatively less stable (median Jaccard index
between 0.28 and 0.35). PPCOR and PIDC, the other two methods
in the top five, had higher median Jaccard indices of 0.62 each.
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Fig. 2 | Summary of results for datasets from synthetic networks. The first
six columns display the median AUPRC ratios for the 20 datasets with
2,000 and 5,000 cells, with algorithms (rows) ordered in decreasing

order of the median of the per-network median AUPRC ratios. The next

set of six columns displays the median stability scores across multiple
datasets (Methods). For each network, the color in each cell is proportional
to the corresponding value (scaled between O and 1). We display the
highest and lowest values for each network inside the corresponding cells.
Abbreviations: LI, linear; CY, cycle; LL, linear long; BF, bifurcating; BFC,
bifurcating converging and TF, trifurcating.

We simulated the inferred GRNs to see if they had the same
number of steady states as the ground-truth networks. Apart from
the linear network, we found that more than 60% of the GRNs
yielded more steady states than in the ground truth (Supplementary
Note 1.4). For networks with multiple steady states, there was
no clear benefit to computing a single GRN after combining all
trajectories over merging the GRNs inferred for each trajectory
(Supplementary Note 1.5).

Datasets from curated models. Dense subnetworks of large-scale
GRNs that have been used to generate simulated datasets of single-
cell gene expression'*'®'”*** may not capture the complex regula-
tion in any specific developmental process. To avoid this pitfall, we
selected four published Boolean models: mammalian cortical area
development (mCAD)?*, ventral spinal cord (VSC) development®,
hematopoietic stem cell (HSC) differentiation”’” and gonadal sex
determination (GSD)* (Fig. 3 and Supplementary Table 2).

We confirmed that the BoolODE-simulated datasets for each
Boolean model (1) captured the same number of steady states as in the
model (Fig. 3b) and (2) matched the unique gene expression pattern
that characterized each steady state of that model, as reported in the
corresponding publication (Supplementary Note 2.1). Encouraged
by these results, we used BoolODE to create ten different datasets
with 2,000 cells for each model. For each dataset, we generated one
version with a dropout rate of g = 50 and another with a rate of g=70
(Methods)'". We computed pseudotimes using Slingshot® for each
dataset and provided these values to the algorithms, to mimic a real
analysis pipeline. We performed a parameter sweep and selected
the values that gave the highest median AUPRC for each model
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(Supplementary Note 2.2). We then ran each of the 12 algorithms on
each of the 120 datasets (30 per model).

Figure 4 summarizes our findings for the datasets without drop-
outs. Only four methods (gene regulation inference for single-cell
with linear differential equations and velocity inference (GRISLI),
SCODE, SINGE and SINCERITIES) had a median AUPRC ratio
greater than one for the mCAD model. The reason may be the high
density of the underlying network (Supplementary Table 2). For the
VSC model, which only has inhibitory edges, three methods (PIDC,
GRNBoost2 and GENIE3) had an AUPRC ratio greater than 2.5.
These three methods also had an AUPRC ratio close to 2.0 for the
HSC model. PPCOR, GRISLI and SCRIBE tied for the highest
median AUPRC ratio of 1.4 for the GSD model. Overall, GENIE3,
GRNBoost2 and PIDC had among the highest median AUPRC
ratios for two out of the four models. SINCERITIES, SCRIBE and
SINGE, which were the best algorithms according to the AUPRC
ratios for the datasets from synthetic networks, had a close to ran-
dom median AUPRC ratio for all four curated models. We address
this trend in the Discussion.

Supplementary Figs. 4 and 5 show distributions of the AUPRC
and AUROC values for all dropout rates. To study the effect of drop-
outs, for each algorithm, we compared the distributions of AUPRC
scores across all Boolean models between g=0 and q=50 and
between g =0 and q=70. Four and seven GRN inference methods
had a statistically significant difference in AUPRC values for the 0-50
and the 0-70 comparison, respectively (Supplementary Note 2.3).
The four algorithms that were unaffected by dropout rates
(GRNVBEM, LEAP, SCRIBE and SINCERITIES) had worse-than-
random AUPRC values on the mCAD and VSC datasets.

Next, we studied the early precision and early precision ratio
(EPR) values of the top-k predictions (Methods) for each of the
four models. In at least one of the four models, 11 algorithms had
a median EPR less than or close to one; that is, similar to a ran-
dom predictor (black squares in Fig. 4). In the 29 cases when the
median EPR was at least one, it was 1.5 or larger only 16 times. The
mCAD model had the smallest number of algorithms (two, GRISLI
and SCODE) with median EPR larger than one. For datasets with
dropouts, we did not see any clear trends in terms of smaller or
larger early precision values compared to the dropout-free results
(Supplementary Fig. 6).

We also investigated if the GRN inference methods were bet-
ter at recovering activating edges or inhibitory edges. The mCAD
model was again an outlier for EPR for activating and inhibitory
edges, with only SCODE having slightly better-than-random
scores for both. Overall, the GRN inference algorithms per-
formed poorly when it comes to recovering the true edges within
the top-k predictions.

We examined which algorithms produced similar reconstruc-
tions. For every model, the three best-performing methods (PIDC,
GENIE3 and GRNBoost2) had similar outputs (Supplementary
Note 2.4). In addition, LEAP and PPCOR were similar to the first
three methods for the mCAD and GSD models. Pairwise similari-
ties were poor for the other algorithms.

The GRNs formed by the top-k edges contained a higher than
expected number of feedforward loops and lower than expected
feedback loops and mutual interactions (Supplementary Note 2.5).
Further, a very large fraction of false positives in the top-k edges
corresponded to paths of length two in the ground-truth networks
(Supplementary Note 2.6). This tendency to predict ‘indirect’ inter-
actions could be the reason for the low EPR values.

Experimental single-cell RNA-seq datasets. We selected five
experimental single-cell RNA-seq datasets, two in human and
three in mouse cells, comprising seven cell types (Methods and
Supplementary Table 3). We collected three different types of
ground-truth network: cell-type-specific ChIP-seq, nonspecific
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Fig. 3 | Visualization of t-SNE projections of simulations reveals trajectories leading to steady states that correspond to those of the curated models.
Each row in the figure corresponds to a model, indicated on the left: mCAD, VSC, HSC differentiation and GSD determination. a, Network diagrams of the
models. b, t-SNE visualizations of 2,000 cells sampled from the BoolODE output. The color of each point indicates the corresponding simulation time.

¢, Each color corresponds to a different subset of cells obtained by using k-means clustering of simulations, with k set to the number of steady states
reported in the relevant publication (two for mCAD, five for VSC, four for HSC and two for GSD). d, Pseudotimes and principal curves (black) computed
by Slingshot showing correspondence with simulation times in b and clusters in ¢, respectively. Colors of simulation time and pseudotime: blue for early,

green for intermediate and yellow for later.

ChIP-seq and functional interaction networks (Methods and
Supplementary Table 4).

To measure the running time of the algorithms, we selected three
cell types, namely, human mature hepatocytes (hHEP), human
embryonic stem cells (hESCs) and erythroid-lineage mouse hema-
topoietic stem cells (mHSC-E), which contained different numbers
of cells. We executed the algorithms on multiple subsets of highly
varying genes in each dataset. For 5,000 genes, the running times
ranged from minutes (PPCOR, LEAP, SINCERITIES and SCODE)
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to hours (GRNBOOST?2) to nearly a day (GENIE3 and PIDC).
GRNVBEM, SCRIBE and SINGE were the slowest methods tak-
ing a few hours to nearly a day for 1,000 genes (Supplementary
Fig. 7). There was little to no variation in the running times of any
method with increasing number of cells. Since the implementations
of GENIE3, GRNBoost2 and SINGE are multithreaded, their wall-
clock times can be lowered by a factor proportional to the number
of threads available. Most of the algorithms did not require more
than 4 GB of RAM for up to 2,000 genes.
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Fig. 4 | Summary of results for ten datasets without dropouts from curated models. Rows correspond to algorithms ordered by decreasing median of the per-
model median AUPRC ratios. The four sets of four columns each display the median AUPRC ratios, median EPR, median EPR for activating edges and median
EPR for inhibitory edges. For each model, the color in each cell is proportional to the corresponding value (scaled between O and 1, ignoring values that are less
than that of a random predictor, shown as black squares). We display the highest and lowest values for each model inside the corresponding cells.

For further analysis, we selected the five algorithms with the
highest median AUPRC in each of the earlier two datasets:
SINCERITIES, SCRIBE, SINGE, PPCOR and PIDC for synthetic
networks and PIDC, GENIE3, GRNBoost2, PPCOR and SCODE
for Boolean models; PIDC and PPCOR were in both sets. We
did not retain SINGE and SCRIBE because of the time taken for
parameter search.

For each RNA-seq dataset, we created four subsets of genes con-
taining all the significantly varying TFs and either (1) the 500 or (2)
1,000 most-varying genes and only the (3) 500 or (4) 1,000 most-
varying genes. We intersected each ground-truth network with each
set of genes.

We compared the algorithms based on the EPR, reasoning that
predicted interactions of higher confidence will be more interesting
to experimentalists. We used the top-k networks, setting k equal to
the number of edges in the corresponding reduced ground-truth
dataset. We performed parameter search to optimize the EPR
(Supplementary Note 3.1).

In general, the algorithms achieved lower EPR values in net-
works with higher densities; that is, the cell-type-specific ChIP-seq
networks (Fig. 5 and Supplementary Fig. 8). While the STRING
and nonspecific ChIP-seq networks had similar densities, the GRN
methods typically achieved a higher EPR for the former. STRING
networks contain both physical and functional (indirect) interac-
tions. The higher EPR ratios obtained for STRING networks com-
pared to ChIP-seq networks of similar density suggested that a
substantial fraction of the edges in the inferred GRNs were indi-
rect, reinforcing our findings for Boolean models. The densities
of the cell-type-specific ChIP-seq networks varied considerably
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(from 0.08 to 0.58). The EPR of most of the methods on these net-
works was close to 1, that is, similar to a random predictor, with no
EPR value exceeding 1.5.

GENIE3, PIDC and GRNBoost2 were the three methods with
the highest EPR values for experimental datasets (Fig. 5 and
Supplementary Fig. 8), just as they were for curated models (Fig. 4).
These methods also performed equally well for AUPRC ratios
(Supplementary Figs. 9 and 10). When we computed modules
in the GRNs output by these methods, we found that they had a
good concordance with clusters determined directly from the gene
expression data (Supplementary Note 3.2). PPCOR, which was
consistently in the top-four methods for both synthetic networks
and curated models, had only a slightly better-than-random EPR
across all experimental datasets. PPCOR’s AUPRC decreased mod-
erately as we increased dropouts in datasets from curated models
(Supplementary Fig. 4). We speculate that dropouts in experimental
single-cell RNA-seq datasets had a severe effect on PPCOR.

To examine the effect of the number of genes, as well as including
all significantly varying TFs, we evaluated the three top perform-
ing methods, PIDC, GENIE3 and GRNBoost2, on the nonspecific
ChIP-seq and STRING networks. We found that the median EPR
had a statistically significant improvement when we included all
significantly varying TFs in the analysis (Supplementary Note 3.3).
However, the addition of highly varying genes (500 versus 1,000) did
not lead to a significant improvement in EPR values. The AUPRC
ratio did not vary with the number of genes.

Almost every algorithm produced nearly identical outputs
when we ran it on the same dataset multiple times (Supplementary
Note 3.4). However, for the same dataset, the results varied
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Fig. 5 | Summary of EPR results for experimental single-cell RNA-seq datasets. The left half of the figure (TFs+500 genes) shows results for datasets
composed of all significantly varying TFs and the 500 most-varying genes. Each row corresponds to one scRNA-seq dataset. The first three columns report
network statistics. The next six columns report EPR values. The right half (TFs +1,000 genes) shows results for all significantly varying TFs and the 1,000
most-varying genes. In both sections, algorithms are sorted by median EPR across the datasets (rows) for the TFs + 500 gene set. For each dataset, the
color in each cell is proportional to the corresponding value scaled between O and 1 (ignoring values that are less than that of a random predictor, which
are shown as black squares). We display the highest and lowest values for each dataset inside the corresponding cells. Abbreviations: GENI, GENIE3;
GRNB, GRNBoost2; lof/gof, loss-of-function/gain-of-function; PCOR, PPCOR and SINC, SINCERITIES.

substantially from one algorithm to another (Supplementary
Note 3.5), in contrast to curated models where the top performing
methods yielded similar results (Supplementary Note 2.4). Moreover,
ensembles of the algorithm outputs did not perform systemati-
cally better than the best method for each dataset (Supplementary
Note 3.5). This result stands in contrast to the success of ensembles
in inferring GRNs from bulk transcriptional data™.

Discussion

We have presented BEELINE, a framework for benchmarking
algorithms that infer GRNs from single-cell gene expression data.
Figure 6 summarizes the properties of the algorithms and the insights
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from this study. Despite considerable variation in algorithm perfor-
mance across the different types of data, we noted a few trends. The
synthetic networks were easier to recover than the curated models.
The reason may be that the synthetic networks have simple and well-
defined trajectories. For curated models, each of which has multiple
trajectories, we found that methods that do not require pseudotime
information (GENIE3, GRNBoost2 and PIDC) performed the best.
Methods that performed well for Boolean models also inferred
GRNs of good accuracy for experimental datasets. Nevertheless, the
overall performance of these approaches was less than ideal.

A surprising trend was that the best-performing algorithms
for datasets from synthetic networks (SINCERITIES, SCRIBE and
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Fig. 6 | Summary of properties of GRN inference algorithms and results obtained from BEELINE. Each row corresponds to one of the algorithms included
in our evaluation. The first six columns display algorithm methodology, required additional inputs, whether the method needs cells to be time-ordered,
and whether the inferred edges are directed and signed. The next three columns summarize the results in Figs. 2, 4 and 5. The next four columns present
results for different types of stability. The final set of columns contain the running time and memory usage. For the ‘Pseudotime’ column, we only
considered the seven methods that required these values, ignoring SCNS due to its long execution time. See Methods for details on how we generated this
figure. Abbreviations: MI, mutual information; RF, random forest; Corr, Correlation; Reg, regression; GC, Granger causality and Bool, Boolean model.

SINGE, Fig. 2) had poor results on datasets from curated models
(Fig. 4); SINCERITIES had close to or worse-than-random EPRs
on experimental datasets as well (Fig. 5). When we inferred GRNs
for synthetic networks using shuffled pseudotimes (Methods), we
observed a general decrease in performance with an increase in the
size of the window over which we shuffled the pseudotime values,
with the effect being most pronounced for SINCERITIES, SCRIBE
and SINGE (‘Pseudotime’ in Fig. 6 and Supplementary Fig. 11). This
analysis suggests that these algorithms may be sensitive to accurate
pseudotime imputation.

Based on these observations, we make specific recommenda-
tions for users seeking to apply these methods.

PIDC, GENIE3 and GRNBoost2 are the methods of choice,
since they were leading and consistent performers for curated
models and experimental datasets in terms of accuracy.
GENIE3 and PIDC also had better stability across multiple
runs, whereas GRNBoost2 was less sensitive to the presence
of dropouts. Since these methods do not require pseudotime-
ordered cells, they are immune to any errors in pseudotime
computation. As the quality of pseudotime inference improves,
SINCERITIES may become a good choice, especially since it is
stable across multiple runs and in the presence of dropouts.
Since GRNBoost2 and GENIE3 have multithreaded implemen-
tations®, they are as efficient as PIDC for 2,000 genes or fewer.
Our results suggest that adding more highly varying genes
(1,000 rather than 500) and/or considering all significantly

ii.

iii.

iv.
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varying TFs contribute to significant improvements in the EPR
of the best-performing algorithms. However, there is no effect
on AUPRC. A recent best-practice guide’ has suggested using
1,000-5,000 highly variable genes for single-cell RNA-seq anal-
yses such as clustering and differential expression. However,
GRN algorithms may require significant computation time
beyond 1,000 genes. Hence, the strategy for selection of genes
merits further analysis.

Inference of GRNSs has been an active area of research for more
than 20 years. Our evaluation shows that GRN inference remains a
challenging problem. One possible reason is that single-cell RNA-
seq techniques may not still provide sufficient resolution and varia-
tion in expression for the reliable inference of GRNs despite rapid
advances both in the number of cells that can be measured and
the depth of coverage®. There may also be inherent shortcomings
to the assumption that statistical relationships between expres-
sion patterns correspond to regulatory interactions. In this con-
text, we observed that false positive edges form feedforward loops
when added to ground-truth networks (Supplementary Note 2.5).
To avoid such indirect interactions, it may be important to inte-
grate additional types of data such as known TF binding sites or
ChIP-seq measurements”. Finally, a target gene’s expression level
may change even if the regulating TF does not vary in abundance.
Recent approaches that interrogate single cells along multiple
modalities””* may be important for the next generation of GRN
inference algorithms.
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BoolODE was a critical component of our analysis. We devel-
oped BoolODE after noting that reported AUROC or precision
at early recall values for GRN algorithms were often close to that
of a random predictor®'®'"'*!> as we also observed. Therefore, we
reasoned that it would be valuable to the community to bench-
mark GRN algorithms by applying them to accurate simulations of
Boolean models with predictable trajectories. BoolODE is success-
ful at this task and promises to be useful as an independent tool.

As single-cell experiments become more complex, cellular tra-
jectories will also be more intricate, perhaps involving multiple
stages of bifurcation and/or cycling. A key challenge that lies ahead
is accurately computing the underlying GRNs. We hope that sci-
entists will use BEELINE in conjunction with BoolODE as they
develop new approaches for GRN inference.
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Regulatory network inference algorithms. We briefly describe each algorithm we
have included in this evaluation. We have ordered the methods chronologically by
year and month of publication. Every software package had an open source license,
other than GRNVBEM and GRISLI, which did not have any license.

1. GENIE3 (ref. ). Developed originally for bulk transcriptional data, GENIE3
computes the regulatory network for each gene independently. It uses tree-
based ensemble methods such as random forests to predict the expression
profile of each target gene from profiles of all the other genes. The weight
of an interaction comes from the importance of an input gene in the
predictor for a target gene’s expression pattern. Aggregating these
weighted interactions over all the genes yields the regulatory network.

This method was the top performer in the DREAM4 in silico network
challenge (multifactorial subchallenge).

2. PPCOR'. This R package computes the partial and semi-partial correlation
coefficients for every pair of variables (genes, in our case) with respect to all
the other variables. It also computes a P value for each correlation. We use
this package to compute the partial correlation coefficients. Since these values
are symmetric, this method yields an undirected regulatory network. We use
the sign of the correlation, which is bounded between —1 and 1, to signify
whether an interaction is inhibitory (negative) or activating (positive).

3. LEAP". Starting with pseudotime-ordered data, LEAP calculates the Pear-
son’s correlation of normalized mapped-read counts over temporal windows
of a fixed size with different lags. The score recorded for a pair of genes is
the maximum Pearson’s correlation over all the values of lag that the method
considers. The software includes a permutation test to estimate false discovery
rates. Since the correlation computed is not symmetric, this method can
output directed networks.

4. SCODE". This method uses linear ODEs to represent how a regulatory
network results in observed gene expression dynamics. SCODE relies on a
specific relational expression that can be estimated efficiently using linear
regression. In combination with dimension reduction, this approach leads to
a considerable reduction in the time complexity of the algorithm.

5. PIDC". This method uses concepts from information theory. For every pair
of genes x and y, given a third gene z, the method partitions the pairwise mu-
tual information between x and y into a redundant and a unique component.
It computes the ratio between the unique component and the mutual infor-
mation. The sum of this ratio over all other genes z is the proportional unique
contribution between x and y. The method then uses per-gene thresholds to
identify the most important interactions for each gene. The resulting network
is undirected since the proportional unique contribution is symmetric.

6.  SINCERITIES'. Given time-stamped transcriptional data, this method
computes temporal changes in each gene’s expression through the distance
of the marginal distributions between two consecutive time points using the
Kolmogorov-Smirnov statistic. To infer regulatory connections between
TFs and target genes, the approach uses Granger causality; that is, it uses the
changes in the gene expression of TFs in one time window to predict how
the expression distributions of target genes shift in the next time window.
The authors formulate inference as a ridge regression problem. They infer the
signs of the edges using partial correlation analyses.

7. SCNS'. This method takes single-cell gene expression data taken over a time
course as input and computes logical rules (Boolean formulas) that drive the
progression and transformation from initial cell states to later cell states. By
design, the resulting logical model facilitates the prediction of the effect of gene
perturbations (for example, knockout or overexpression) on specific lineages.

8. GRNVBEMY". This approach infers a Bayesian network representing the gene
regulatory interactions. It uses a first-order autoregressive model to estimate
the fold change of a gene at a specific time as a linear combination of the
expression of the gene’s regulators in the Bayesian network at the previous
time point. It infers the GRN within a variational Bayesian framework.

This method can associate signs with its directed edges.

9. SCRIBE". Similar to PIDC, this approach uses ideas from information
theory. The relevant concept here is conditioned restricted directed informa-
tion, which measures the mutual information between the past state (expres-
sion values) of a regulator and the current state of a target gene conditioned
on the state of the target at the previous time point. To obtain efficiency for
large datasets, the authors use an unconditioned version called RDI, followed
by the context likelihood of relatedness algorithm* to remove edges that cor-
respond to indirect effects. We used this strategy for experimental single-cell
RNA-seq datasets.

10. GRNBoost2 (ref. ¥). GRNBoost2 is a fast alternative for GENIE3, especially
suited for datasets with tens of thousands of observations. Like GENIE3,
GRNBoost2 trains a regression model to select the most important regulators
for each gene in the dataset. GRNBoost2 achieves its efficiency by using sto-
chastic gradient boosting machine regression with early stopping regulariza-
tion to infer the network.

11. GRISLY. Like SCODE, this approach uses a linear ODE-based formalism.
GRISLI estimates the parameters of the model using different ideas. Taking

NATURE METHODS | www.nature.com/naturemethods

either the experimental time of the cells or estimated pseudotime as input,

it first estimates the velocity of each cell, that is, how each gene’s expression
value changes as each cell undergoes a dynamical process™. It then computes
the structure of the underlying GRN by solving a sparse regression problem
that relates the gene expression and velocity profiles of each cell.

12.  SINGE". The authors observe that while many gene inference algorithms
start by computing a pseudotime value for each cell, the distribution of cells
along the underlying dynamical process may not be uniform. To address this
limitation, SINGE uses kernel-based Granger causality regression to alleviate
irregularities in pseudotime values. SINGE performs multiple regressions,
one for each set of input parameters, and aggregates the resulting predictions
using a modified Borda method.

In summary, most algorithms developed explicitly for single-cell
transcriptomic data required the cells to be ordered by pseudotime in the
input, with PIDC" being an exception. These methods ideally require datasets
corresponding to linear trajectories; some techniques recommend that data with
branched trajectories be split into multiple linear ones before input'®". In contrast,
methods that had originally been developed for bulk transcriptional data did not
impose this requirement®’. Almost all the methods we included output directed
networks with exceptions being PPCOR and PIDC”'. Only five methods output
signed networks, that is, they indicated whether each interaction was activating
or inhibitory”'>'*", A number of methods inferred each pairwise interaction
independently of the others, sometimes conditioned on the other genes”'>'*".
Several other methods computed all the regulators of a gene simultaneously but
solved the problem independently for each gene®*-'%!>101,

Other methods. We next discuss other papers on this topic and our rationale for
not including them in the comparison. We did not consider a method if it was
supervised” or used additional information; for example, a database of TFs and
their targets' or a lineage tree’. We did not include methods that output a single
GRN without any edge weights**, since any such approach would yield just a
single point on a precision-recall curve. Other than SCNS, we did not consider
methods that output Boolean networks”"**.

BoolODE: converting Boolean models to ODEs. GeneNetWeaver*>***! is a widely
used method to simulate bulk transcriptomic data from GRNs. GeneNetWeaver
has also been applied in single-cell analysis'*'*'"*"** but has limitations, as we have
demonstrated (Supplementary Fig. 1). To deal with this challenge, we develop a
method called BoolODE that systematically and accurately converts a Boolean
model into a system of stochastic differential equations (SDEs).

We start this section by giving an overview of GeneNetWeaver. Next, we
describe our BoolODE framework that we have developed and highlight its
differences with GeneNetWeaver. We end this section by summarizing BoolODE
and the reasons we prefer it over GeneNetWeaver.

GeneNetWeaver. This method starts with a network of regulatory interactions
among TFs and their targets. It computes a connected, dense subnetwork around a
randomly selected seed node and converts this network into a system of differential
equations. To express this network in the form of ODEs, it assigns each node
i in the network a ‘gene’ variable (x,) representing the level of messenger RNA
expression and a ‘protein’ variable (p;) representing the amount of TF produced
by protein translation as follows:

T pR)

dpi] _
o~ k= bl

where m is the mRNA transcription rate, /, is the mRNA degradation rate, r is the
protein translation rate and [, is the protein degradation rate. In the first equation,
R, denotes the set of regulators of node i. The nonlinear input function f(R;)
captures all the regulatory interactions controlling the expression of node i (ref. ');
we specify it below.

If there are N regulators for a given gene, there are 2V possible configurations
of how the regulators can bind to the gene’s promoter. Considering cooperative
effects of regulator binding, the probability (Pr) of each configuration S € 2%, the
powerset of R, is given by the following equation®*

(i
1+ quT([‘l]/k)“

where k and # are the Hill threshold and Hill coefficient, respectively. Here,

we use q to denote a single regulator in the configuration S and the product in

the numerator ranges over all regulators that are present (bound) in S. In the
summation in the denominator of this equation, the set T ranges over all members
of the powerset 2% other than the empty set. GeneNetWeaver further introduces

a randomly sampled parameter as€ [0,1] to specify the efficiency of transcription

Pr(S)
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activation by a specific configuration S of bound regulators. Thus, the function f(R;)
thus takes the following form:

fR) =" asPr(s)

Se2ki

Next, GeneNetWeaver adds a noise term to each equation to mimic stochastic
effects in gene expression”. In addition, to create variations among individual
experimental samples, GeneNetWeaver recommends adopting a multifactorial
perturbation® that increases or decreases the basal activation of each gene in the
GRN simultaneously by a small, randomly selected value. GeneNetWeaver removes
this perturbation after the first half of the simulation. Simulating this system of
SDEs generates the requisite gene expression data.

BoolODE uses Boolean models to create simulated datasets. To generate simulated
time course data for our analysis, we used the GeneNetWeaver framework with

one critical difference and one minor variation. The form of the equations used by
BoolODE is identical to that of GeneNetWeaver. The critical difference is that we
do not sample the g parameters in the above equation randomly; that is, we do not
combine the regulators of each gene using a random logic function. Instead, we use
the fact that in both the artificial networks and the literature-curated models, we
know the Boolean function that specifies how the states of the regulators control the
state of the target genes. Moreover, we can express any arbitrary Boolean function
in the form of a truth table relating the input states (that is, activities of TFs) to the
output state (the activity of target gene). For a gene with N regulators in its Boolean
function, we explore all 2 combinations of TF states and evaluate the transcriptional
activity of each specific regulator configuration. Since the value of the Boolean
function is the logical disjunction (‘or’) of all these values, we set the  value to

one (respectively, zero) for every configuration that evaluates to ‘on’ (respectively,
‘off”). The following example illustrates our approach. Consider a gene X with two
activators (P and Q) and one inhibitor (R), represented by the following rule:

X=(PVQ)A—(R)
The truth table corresponding to this rule along with the a parameters

is shown in Supplementary Table 5. Therefore, the ODE governing the time
dynamics of gene X is

a + ap[P] + ag[Q] + ar[R] + ar[P][Q]+
apr[P][R] + agr[Q][R] + apqr[P][Q][R]

dx] _
o m 1+ [PI+[Q+ [RI+[P[Q+[PIRIHQ[RI+[PI[Q[R]
—LX]=m [PI+[QI+(P)[Q] — L[X]

1+ [P[+[Q] + [R] + [P][Q]
+[PI[R] + [QI[R] + [P[Q][R]

since only a;, a, and a,, have the value one and every other parameter has
the value zero.

Next, we discuss the minor variation of BoolODE from GeneNetWeaver, which
is in how we sample kinetic parameters. The GeneNetWeaver equations use four
kinetic parameters: one each for mRNA transcription, protein translation and
mRNA and protein degradation rates. Saelens et al.”” sample them uniformly from
parameter specific intervals. Independently for every dataset, we sample each
parameter from a normal distribution using the value shown in Supplementary
Table 6 as the mean and a standard deviation of up to 10% of this mean value.
Within a single dataset and for all simulations for that dataset, we fix each
parameter (for example, mRNA degradation rate) for all genes. We choose the
values in Supplementary Table 6 so as to achieve the following characteristics:
The maximal steady state achievable by the mRNAs is two (the value of m/1,), of
the proteins is ten (the value of #/],), and the time scale of protein production is
ten times that of the mRNAs (since the characteristic time scale of production is
inversely proportional to the degradation rate).

To create stochastic simulations, we use the formulation proposed by
Saelens et al.”’ to modify the ODE expressions as follows:

dgii] = mf (R) — L[] + sv/[s]AW,

dpi]
dt

= rlx] — Llp] + sv/[p AW,

AW, = N(0,h)

where s is the noise strength. We use s = 10 in our simulations. We use the
Euler-Maruyama scheme for numerical integration of the SDEs with a time
step of h=0.01.

Defining a single cell. We define the vector of gene expression values corresponding
to a particular time point in a model simulation as a single cell. For every analysis,

we sample one time point; that is, one cell from a single simulation. Using this
procedure, for a dataset generated from 5,000 simulations, we can obtain up
to 5,000 cells.

Creating GeneNetWeaver simulations for comparison with BoolODE. To simulate a
synthetic network using GeneNetWeaver, we used its edge list as the input network
to GeneNetWeaver. To create the simulations, we used the default options of the
noise parameter (0.05) and multifactorial perturbations. We only performed
wildtype simulations and used the DREAM4 time series output format for
comparison with the BoolODE output.

Summary. We developed the BoolODE approach to convert Boolean functions
specifying a GRN directly to ODE equations. Our proposed BoolODE pipeline
accepts a file describing a Boolean model as input, creates an equivalent ODE
model, adds noise terms and numerically simulates a stochastic time course.
Different model topologies can produce different numbers of steady states. Since
we carry out stochastic simulations, we perform a large number of simulations

in an attempt to ensure that we can reach every steady state. Our analysis of the
trajectories computed by BoolODE on datasets from curated models demonstrates
the success of our approach in this regard (Supplementary Note 2.1). We prefer
BoolODE over a direct application of GeneNetWeaver to create datasets from
synthetic networks and datasets from curated models for three reasons: (1) a
dense regulatory subnetwork computed around a randomly selected node,

as used by GeneNetWeaver, may not correspond to a real biological process;

(2) GeneNetWeaver introduces a random, initial, multifactorial perturbation and
removes it halfway to create variations in the expression profiles of genes across
samples. This stimulation may not correspond to how single-cell gene expression
data is collected and (3) GeneNetWeaver’s SDEs do not appear to captu