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Single-cell RNA-sequencing technology has made it possible 
to trace cellular lineages during differentiation and to iden-
tify new cell types1,2. A central question that arises now is 

whether we can discover the gene regulatory networks (GRNs) 
that control cellular differentiation and drive transitions from 
one cell type to another. In such a GRN, each edge connects a 
transcription factor (TF) to a gene it regulates. Ideally, the edge  
is directed from the TF to the target gene, represents direct  
rather than indirect regulation and corresponds to activation  
or inhibition.

Single-cell expression data are especially promising for comput-
ing GRNs because, unlike bulk transcriptomic data, they do not 
obscure biological signals by averaging over all the cells in a sample. 
However, these data have features that pose significant difficulties; 
for example, substantial cellular heterogeneity3, cell-to-cell variation 
in sequencing depth, the high sparsity caused by dropouts4 and cell-
cycle-related effects5. Despite these challenges, over a dozen meth-
ods have been developed or used to infer GRNs from single-cell 
data6–19. An experimentalist seeking to analyze a new dataset faces 
a daunting task in selecting an appropriate inference method since 
there are no widely accepted ground-truth datasets for assessing 
algorithm accuracy and the criteria for evaluation and comparison 
of methods are varied.

We have developed BEELINE, a comprehensive evaluation 
framework to assess the accuracy, robustness and efficiency of 
GRN inference techniques for single-cell gene expression data 
based on well-defined benchmark datasets (Fig. 1). BEELINE 
incorporates 12 diverse GRN inference algorithms. It provides an 
easy-to-use and uniform interface to each method in the form of a 
Docker image. BEELINE implements several measures for estimat-
ing and comparing the accuracy, stability and efficiency of these 
algorithms. Thus, BEELINE facilitates reproducible, rigorous and 
extensible evaluations of GRN inference methods for single-cell 
gene expression data.

Results
Overview of algorithms. We surveyed the literature and bioRxiv 
preprints for papers that either published a new GRN inference algo-
rithm or used an existing approach. We ignored methods that did 
not assign weights or ranks to the interactions, required additional 
datasets or supervision, or sought to discover cell-type-specific net-
works. We selected 12 algorithms using these criteria (Methods).

We used BEELINE to evaluate these approaches on over 400 
simulated datasets (across six synthetic networks and four curated 
Boolean models) and five experimental human or mouse single-
cell RNA-seq datasets. Since eight algorithms require pseudotime-
ordered cells, we used datasets (both simulated and real) that focus 
on cell differentiation and development, processes in which there is 
a meaningful temporal progression of cell states. We did not study 
GRNs relevant to other biological processes; for example, changes in 
disease states or differences among cell types.

Datasets from synthetic networks. Our motivations for using 
synthetic networks were two-fold. First, we wanted to use a known 
GRN that could serve as the ground truth. Second, we desired to 
create in silico single-cell gene expression datasets that were isolated 
from any limitations of pseudotime inference algorithms. Therefore, 
we started with six synthetic networks (Supplementary Fig. 1a and 
Supplementary Table 1). Simulating these networks should pro-
duce a variety of different trajectories seen in differentiating and 
developing cells20. Several recent studies on GRN inference14,16,17,21,22 
have used GeneNetWeaver23 to create in silico single-cell gene 
expression datasets. However, when we simulated the six synthetic 
networks using GeneNetWeaver (Methods), we observed no dis-
cernible trajectories in the two-dimensional projections of these 
data (Supplementary Fig. 1d).

We therefore used our BoolODE approach (Methods) to simu-
late these networks. For each gene in a GRN, BoolODE requires a 
Boolean function that specifies how that gene’s regulators combine to 
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control its state. We represent each Boolean function as a truth table, 
which we convert into a nonlinear ordinary differential equation 
(ODE). This approach provides a reliable method to capture the logi-
cal relationships among the regulators precisely in the components 
of the ODE. We add noise terms to make the equation stochastic20,24.

For each network, we applied BoolODE by sampling ODE 
parameters ten times and generating 5,000 simulations per param-
eter set (Methods). We created five datasets per parameter set, one 
each with 100, 200, 500, 2,000 and 5,000 cells by sampling one cell 
per simulation, to obtain 50 different expression datasets. Analyzing 
the two-dimensional projections of these simulations reassured us 
that BoolODE was successful in correctly simulating the network 
models (Supplementary Fig. 1b,c and Supplementary Note 1.1).

Setting each network as the ground truth, we executed the 12 
algorithms on every one of the 50 simulated datasets. For those GRN 
inference methods that required time information, we provided the 
simulation time at which we sampled each cell. For the bifurcating, 
bifurcating converging and trifurcating networks, we ran the algo-
rithms that need time information on each trajectory individually 
and combined the outputs (Methods). Six algorithms required one or 
more parameters to be specified. We performed a parameter sweep 
to determine the values that gave the highest median area under the 
precision-recall curve (AUPRC) (Supplementary Note 1.2).

For each network–algorithm pair, Fig. 2 displays the median 
AUPRC ratio (the AUPRC divided by that of a random predictor). 
Supplementary Figs. 2 and 3 show the box plots of AUPRC and area 
under the receiver operating characteristic curve (AUROC) val-
ues. The methods performed best for the linear network: 10 out of 
12 algorithms had a median AUPRC ratio greater than 2.0. Seven 

methods had a median AUPRC ratio greater than 5.0 for the linear 
long network. The cycle, bifurcating converging, bifurcating and 
trifurcating networks were progressively harder to infer, with no 
algorithm achieving an AUPRC ratio of two or more on the last net-
work. Single-cell regularized inference using time-stamped expres-
sion profiles (SINCERITIES) obtained the highest median AUPRC 
ratio for four out of the six networks. Single-cell inference of net-
works using Granger ensembles (SINGE) had the highest median 
AUPRC ratio for cycle and partial information decomposition and 
context (PIDC) for trifurcating.

We examined the effect of the number of cells on AUPRC by 
comparing the values for 100, 200, 500 and 2,000 cells to those 
for 5,000 cells (Supplementary Note 1.3). As the number of cells 
increased from 100 to 500, the number of algorithms with signifi-
cantly lower AUPRC values in comparison to 5,000 cells decreased 
from seven to four. The number of cells had no significant effect 
on five algorithms: gene network inference with ensemble of trees 
(GENIE3), GRN variational Bayesian expectation-maximization 
(GRNVBEM), lag-based expression association for pseudotime-
series (LEAP), single-cell network synthesis (SCNS) and SCODE.

To examine the stability of the results, we considered the GRNs 
formed by the k edges with the highest ranks, with k set to the num-
ber of edges in each synthetic network, computed the Jaccard indi-
ces of all pairs of GRNs, and recorded the medians of these values  
(Fig. 2 and Methods). While SINCERITIES, SINGE and SCRIBE had 
the three highest median-of-median AUPRC ratios, the networks 
they predicted were relatively less stable (median Jaccard index 
between 0.28 and 0.35). PPCOR and PIDC, the other two methods 
in the top five, had higher median Jaccard indices of 0.62 each.
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Fig. 1 | An overview of the BeeLINe evaluation framework. We apply GrN inference algorithms to three types of data: datasets from synthetic networks, 
datasets from curated Boolean models from the literature and experimental single-cell transcriptional measurements. We process each dataset through a 
uniform pipeline: preprocessing, Docker containers for 12 GrN inference algorithms, parameter estimation, postprocessing and evaluation. We compare 
algorithms based on accuracy (AUPrC and early precision), stability of results (across simulations, in the presence of dropouts and across algorithms), 
analysis of network motifs and scalability.
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We simulated the inferred GRNs to see if they had the same 
number of steady states as the ground-truth networks. Apart from 
the linear network, we found that more than 60% of the GRNs 
yielded more steady states than in the ground truth (Supplementary 
Note 1.4). For networks with multiple steady states, there was 
no clear benefit to computing a single GRN after combining all 
trajectories over merging the GRNs inferred for each trajectory 
(Supplementary Note 1.5).

Datasets from curated models. Dense subnetworks of large-scale 
GRNs that have been used to generate simulated datasets of single-
cell gene expression14,16,17,21,22 may not capture the complex regula-
tion in any specific developmental process. To avoid this pitfall, we 
selected four published Boolean models: mammalian cortical area 
development (mCAD)25, ventral spinal cord (VSC) development26, 
hematopoietic stem cell (HSC) differentiation27 and gonadal sex 
determination (GSD)28 (Fig. 3 and Supplementary Table 2).

We confirmed that the BoolODE-simulated datasets for each 
Boolean model (1) captured the same number of steady states as in the 
model (Fig. 3b) and (2) matched the unique gene expression pattern 
that characterized each steady state of that model, as reported in the 
corresponding publication (Supplementary Note 2.1). Encouraged 
by these results, we used BoolODE to create ten different datasets 
with 2,000 cells for each model. For each dataset, we generated one  
version with a dropout rate of q = 50 and another with a rate of q = 70 
(Methods)14. We computed pseudotimes using Slingshot29 for each 
dataset and provided these values to the algorithms, to mimic a real 
analysis pipeline. We performed a parameter sweep and selected 
the values that gave the highest median AUPRC for each model 

(Supplementary Note 2.2). We then ran each of the 12 algorithms on 
each of the 120 datasets (30 per model).

Figure 4 summarizes our findings for the datasets without drop-
outs. Only four methods (gene regulation inference for single-cell 
with linear differential equations and velocity inference (GRISLI), 
SCODE, SINGE and SINCERITIES) had a median AUPRC ratio 
greater than one for the mCAD model. The reason may be the high 
density of the underlying network (Supplementary Table 2). For the 
VSC model, which only has inhibitory edges, three methods (PIDC, 
GRNBoost2 and GENIE3) had an AUPRC ratio greater than 2.5. 
These three methods also had an AUPRC ratio close to 2.0 for the 
HSC model. PPCOR, GRISLI and SCRIBE tied for the highest 
median AUPRC ratio of 1.4 for the GSD model. Overall, GENIE3, 
GRNBoost2 and PIDC had among the highest median AUPRC 
ratios for two out of the four models. SINCERITIES, SCRIBE and 
SINGE, which were the best algorithms according to the AUPRC 
ratios for the datasets from synthetic networks, had a close to ran-
dom median AUPRC ratio for all four curated models. We address 
this trend in the Discussion.

Supplementary Figs. 4 and 5 show distributions of the AUPRC 
and AUROC values for all dropout rates. To study the effect of drop-
outs, for each algorithm, we compared the distributions of AUPRC 
scores across all Boolean models between q = 0 and q = 50 and 
between q = 0 and q = 70. Four and seven GRN inference methods 
had a statistically significant difference in AUPRC values for the 0–50 
and the 0–70 comparison, respectively (Supplementary Note 2.3).  
The four algorithms that were unaffected by dropout rates 
(GRNVBEM, LEAP, SCRIBE and SINCERITIES) had worse-than-
random AUPRC values on the mCAD and VSC datasets.

Next, we studied the early precision and early precision ratio 
(EPR) values of the top-k predictions (Methods) for each of the 
four models. In at least one of the four models, 11 algorithms had 
a median EPR less than or close to one; that is, similar to a ran-
dom predictor (black squares in Fig. 4). In the 29 cases when the 
median EPR was at least one, it was 1.5 or larger only 16 times. The 
mCAD model had the smallest number of algorithms (two, GRISLI 
and SCODE) with median EPR larger than one. For datasets with 
dropouts, we did not see any clear trends in terms of smaller or 
larger early precision values compared to the dropout-free results 
(Supplementary Fig. 6).

We also investigated if the GRN inference methods were bet-
ter at recovering activating edges or inhibitory edges. The mCAD 
model was again an outlier for EPR for activating and inhibitory 
edges, with only SCODE having slightly better-than-random 
scores for both. Overall, the GRN inference algorithms per-
formed poorly when it comes to recovering the true edges within 
the top-k predictions.

We examined which algorithms produced similar reconstruc-
tions. For every model, the three best-performing methods (PIDC, 
GENIE3 and GRNBoost2) had similar outputs (Supplementary 
Note 2.4). In addition, LEAP and PPCOR were similar to the first 
three methods for the mCAD and GSD models. Pairwise similari-
ties were poor for the other algorithms.

The GRNs formed by the top-k edges contained a higher than 
expected number of feedforward loops and lower than expected 
feedback loops and mutual interactions (Supplementary Note 2.5). 
Further, a very large fraction of false positives in the top-k edges 
corresponded to paths of length two in the ground-truth networks 
(Supplementary Note 2.6). This tendency to predict ‘indirect’ inter-
actions could be the reason for the low EPR values.

Experimental single-cell RNA-seq datasets. We selected five 
experimental single-cell RNA-seq datasets, two in human and 
three in mouse cells, comprising seven cell types (Methods and 
Supplementary Table 3). We collected three different types of 
ground-truth network: cell-type-specific ChIP–seq, nonspecific 
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ChIP–seq and functional interaction networks (Methods and 
Supplementary Table 4).

To measure the running time of the algorithms, we selected three 
cell types, namely, human mature hepatocytes (hHEP), human 
embryonic stem cells (hESCs) and erythroid-lineage mouse hema-
topoietic stem cells (mHSC-E), which contained different numbers 
of cells. We executed the algorithms on multiple subsets of highly 
varying genes in each dataset. For 5,000 genes, the running times 
ranged from minutes (PPCOR, LEAP, SINCERITIES and SCODE) 

to hours (GRNBOOST2) to nearly a day (GENIE3 and PIDC). 
GRNVBEM, SCRIBE and SINGE were the slowest methods tak-
ing a few hours to nearly a day for 1,000 genes (Supplementary 
Fig. 7). There was little to no variation in the running times of any 
method with increasing number of cells. Since the implementations 
of GENIE3, GRNBoost2 and SINGE are multithreaded, their wall-
clock times can be lowered by a factor proportional to the number 
of threads available. Most of the algorithms did not require more 
than 4 GB of RAM for up to 2,000 genes.
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For further analysis, we selected the five algorithms with the  
highest median AUPRC in each of the earlier two datasets: 
SINCERITIES, SCRIBE, SINGE, PPCOR and PIDC for synthetic 
networks and PIDC, GENIE3, GRNBoost2, PPCOR and SCODE 
for Boolean models; PIDC and PPCOR were in both sets. We 
did not retain SINGE and SCRIBE because of the time taken for 
parameter search.

For each RNA-seq dataset, we created four subsets of genes con-
taining all the significantly varying TFs and either (1) the 500 or (2) 
1,000 most-varying genes and only the (3) 500 or (4) 1,000 most-
varying genes. We intersected each ground-truth network with each 
set of genes.

We compared the algorithms based on the EPR, reasoning that 
predicted interactions of higher confidence will be more interesting 
to experimentalists. We used the top-k networks, setting k equal to 
the number of edges in the corresponding reduced ground-truth 
dataset. We performed parameter search to optimize the EPR 
(Supplementary Note 3.1).

In general, the algorithms achieved lower EPR values in net-
works with higher densities; that is, the cell-type-specific ChIP–seq 
networks (Fig. 5 and Supplementary Fig. 8). While the STRING 
and nonspecific ChIP–seq networks had similar densities, the GRN 
methods typically achieved a higher EPR for the former. STRING 
networks contain both physical and functional (indirect) interac-
tions. The higher EPR ratios obtained for STRING networks com-
pared to ChIP–seq networks of similar density suggested that a 
substantial fraction of the edges in the inferred GRNs were indi-
rect, reinforcing our findings for Boolean models. The densities 
of the cell-type-specific ChIP–seq networks varied considerably 

(from 0.08 to 0.58). The EPR of most of the methods on these net-
works was close to 1, that is, similar to a random predictor, with no 
EPR value exceeding 1.5.

GENIE3, PIDC and GRNBoost2 were the three methods with 
the highest EPR values for experimental datasets (Fig. 5 and 
Supplementary Fig. 8), just as they were for curated models (Fig. 4).  
These methods also performed equally well for AUPRC ratios 
(Supplementary Figs. 9 and 10). When we computed modules 
in the GRNs output by these methods, we found that they had a 
good concordance with clusters determined directly from the gene 
expression data (Supplementary Note 3.2). PPCOR, which was 
consistently in the top-four methods for both synthetic networks 
and curated models, had only a slightly better-than-random EPR 
across all experimental datasets. PPCOR’s AUPRC decreased mod-
erately as we increased dropouts in datasets from curated models 
(Supplementary Fig. 4). We speculate that dropouts in experimental 
single-cell RNA-seq datasets had a severe effect on PPCOR.

To examine the effect of the number of genes, as well as including 
all significantly varying TFs, we evaluated the three top perform-
ing methods, PIDC, GENIE3 and GRNBoost2, on the nonspecific 
ChIP–seq and STRING networks. We found that the median EPR 
had a statistically significant improvement when we included all 
significantly varying TFs in the analysis (Supplementary Note 3.3). 
However, the addition of highly varying genes (500 versus 1,000) did 
not lead to a significant improvement in EPR values. The AUPRC 
ratio did not vary with the number of genes.

Almost every algorithm produced nearly identical outputs 
when we ran it on the same dataset multiple times (Supplementary  
Note 3.4). However, for the same dataset, the results varied  
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substantially from one algorithm to another (Supplementary  
Note 3.5), in contrast to curated models where the top performing 
methods yielded similar results (Supplementary Note 2.4). Moreover, 
ensembles of the algorithm outputs did not perform systemati-
cally better than the best method for each dataset (Supplementary  
Note 3.5). This result stands in contrast to the success of ensembles 
in inferring GRNs from bulk transcriptional data30.

discussion
We have presented BEELINE, a framework for benchmarking  
algorithms that infer GRNs from single-cell gene expression data. 
Figure 6 summarizes the properties of the algorithms and the insights 

from this study. Despite considerable variation in algorithm perfor-
mance across the different types of data, we noted a few trends. The 
synthetic networks were easier to recover than the curated models. 
The reason may be that the synthetic networks have simple and well-
defined trajectories. For curated models, each of which has multiple 
trajectories, we found that methods that do not require pseudotime 
information (GENIE3, GRNBoost2 and PIDC) performed the best. 
Methods that performed well for Boolean models also inferred 
GRNs of good accuracy for experimental datasets. Nevertheless, the 
overall performance of these approaches was less than ideal.

A surprising trend was that the best-performing algorithms 
for datasets from synthetic networks (SINCERITIES, SCRIBE and 
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SINGE, Fig. 2) had poor results on datasets from curated models 
(Fig. 4); SINCERITIES had close to or worse-than-random EPRs 
on experimental datasets as well (Fig. 5). When we inferred GRNs 
for synthetic networks using shuffled pseudotimes (Methods), we 
observed a general decrease in performance with an increase in the 
size of the window over which we shuffled the pseudotime values, 
with the effect being most pronounced for SINCERITIES, SCRIBE 
and SINGE (‘Pseudotime’ in Fig. 6 and Supplementary Fig. 11). This 
analysis suggests that these algorithms may be sensitive to accurate 
pseudotime imputation.

Based on these observations, we make specific recommenda-
tions for users seeking to apply these methods.

 i. PIDC, GENIE3 and GRNBoost2 are the methods of choice, 
since they were leading and consistent performers for curated 
models and experimental datasets in terms of accuracy.

 ii. GENIE3 and PIDC also had better stability across multiple 
runs, whereas GRNBoost2 was less sensitive to the presence 
of dropouts. Since these methods do not require pseudotime-
ordered cells, they are immune to any errors in pseudotime 
computation. As the quality of pseudotime inference improves, 
SINCERITIES may become a good choice, especially since it is 
stable across multiple runs and in the presence of dropouts.

 iii. Since GRNBoost2 and GENIE3 have multithreaded implemen-
tations8, they are as efficient as PIDC for 2,000 genes or fewer.

 iv. Our results suggest that adding more highly varying genes 
(1,000 rather than 500) and/or considering all significantly 

varying TFs contribute to significant improvements in the EPR 
of the best-performing algorithms. However, there is no effect 
on AUPRC. A recent best-practice guide31 has suggested using 
1,000–5,000 highly variable genes for single-cell RNA-seq anal-
yses such as clustering and differential expression. However,  
GRN algorithms may require significant computation time 
beyond 1,000 genes. Hence, the strategy for selection of genes 
merits further analysis.

Inference of GRNs has been an active area of research for more 
than 20 years. Our evaluation shows that GRN inference remains a 
challenging problem. One possible reason is that single-cell RNA-
seq techniques may not still provide sufficient resolution and varia-
tion in expression for the reliable inference of GRNs despite rapid 
advances both in the number of cells that can be measured and 
the depth of coverage32. There may also be inherent shortcomings 
to the assumption that statistical relationships between expres-
sion patterns correspond to regulatory interactions. In this con-
text, we observed that false positive edges form feedforward loops 
when added to ground-truth networks (Supplementary Note 2.5). 
To avoid such indirect interactions, it may be important to inte-
grate additional types of data such as known TF binding sites or 
ChIP–seq measurements15. Finally, a target gene’s expression level 
may change even if the regulating TF does not vary in abundance. 
Recent approaches that interrogate single cells along multiple 
modalities33,34 may be important for the next generation of GRN 
inference algorithms.

PIDC

GENIE3

GRNBOOST2

SCODE

PPCOR

SINCERITIES

SCRIBE

SINGE

LEAP

GRISLI

GRNVBEM

SCNS

MI

RF

RF

ODE + Reg

Corr

Reg

MI

GC

Corr

ODE + Reg

Reg

Bool

Low/Poor High/Good Low/Poor High/Good

–

–

–

–

– – ––

–

–

–

ODE
parameters

–

–

–

–

–

–

Type of RDI –

Regression
parameters

Lag

Regression
parameters

–

Boolean
model
parameters

1 s

5 m

1 m

1 m

1 s

1 s

5 m

3 h

1 s

5 m

1 m

–

0.1 G

1 G

0.1 G

1 M

1 M

0.1 G

0.1 G

0.5 G

1 M

0.5 G

0.1 G

–

0.1 G

2 G

0.1 G

0.1 G

0.1 G

0.1 G

0.1 G

0.5 G

0.1 G

>4 G

2 G

–

0.5 G

2 G

0.5 G

0.1 G

0.1 G

0.1 G

0.1 G

1 G

0.1 G

>4 G

–

–

1 G

2 G

1 G

0.5 G

0.1 G

0.5 G

–

–

0.5 G

–

–

1 m

1 h

10 m

5 m

1 s

1 m

2 h

>1 d

1 s

1 h

>1 d

–

5 m

3 h

30 m

5 m

1 s

5 m

6 h

>1 d

1 m

3 h

–

–

30 m

100 100 500 1,000 2,000500

Time Memory

Scalability (genes)StabilityAccuracyProperties

Cat
eg

or
y

Add
l. i

np
ut

s

Tim
e 

or
de

re
d?

Dire
cte

d?

Sign
ed

?

Syn
th

et
ic

Cur
at

ed

sc
RNA-s

eq

Dat
as

et
s

Run
s

Dro
po

ut
s

Pse
ud

ot
im

e

1,000 2,000

12 h

1 h

30 m

1 s

10 m

–

–

5 m

–

–

Fig. 6 | summary of properties of GRN inference algorithms and results obtained from BeeLINe. each row corresponds to one of the algorithms included 
in our evaluation. The first six columns display algorithm methodology, required additional inputs, whether the method needs cells to be time-ordered, 
and whether the inferred edges are directed and signed. The next three columns summarize the results in Figs. 2, 4 and 5. The next four columns present 
results for different types of stability. The final set of columns contain the running time and memory usage. For the ‘Pseudotime’ column, we only 
considered the seven methods that required these values, ignoring SCNS due to its long execution time. See Methods for details on how we generated this 
figure. Abbreviations: MI, mutual information; rF, random forest; Corr, Correlation; reg, regression; GC, Granger causality and Bool, Boolean model.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods 153

http://www.nature.com/naturemethods


AnAlysis NATuRE METhods

BoolODE was a critical component of our analysis. We devel-
oped BoolODE after noting that reported AUROC or precision 
at early recall values for GRN algorithms were often close to that 
of a random predictor6,10,11,13,15, as we also observed. Therefore, we 
reasoned that it would be valuable to the community to bench-
mark GRN algorithms by applying them to accurate simulations of 
Boolean models with predictable trajectories. BoolODE is success-
ful at this task and promises to be useful as an independent tool.

As single-cell experiments become more complex, cellular tra-
jectories will also be more intricate, perhaps involving multiple 
stages of bifurcation and/or cycling. A key challenge that lies ahead 
is accurately computing the underlying GRNs. We hope that sci-
entists will use BEELINE in conjunction with BoolODE as they 
develop new approaches for GRN inference.
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Methods
Regulatory network inference algorithms. We briefly describe each algorithm we 
have included in this evaluation. We have ordered the methods chronologically by 
year and month of publication. Every software package had an open source license, 
other than GRNVBEM and GRISLI, which did not have any license.

 1. GENIE3 (ref. 6). Developed originally for bulk transcriptional data, GENIE3 
computes the regulatory network for each gene independently. It uses tree-
based ensemble methods such as random forests to predict the expression 
profile of each target gene from profiles of all the other genes. The weight  
of an interaction comes from the importance of an input gene in the  
predictor for a target gene’s expression pattern. Aggregating these  
weighted interactions over all the genes yields the regulatory network.  
This method was the top performer in the DREAM4 in silico network  
challenge (multifactorial subchallenge).

 2. PPCOR7. This R package computes the partial and semi-partial correlation 
coefficients for every pair of variables (genes, in our case) with respect to all 
the other variables. It also computes a P value for each correlation. We use 
this package to compute the partial correlation coefficients. Since these values 
are symmetric, this method yields an undirected regulatory network. We use 
the sign of the correlation, which is bounded between −1 and 1, to signify 
whether an interaction is inhibitory (negative) or activating (positive).

 3. LEAP12. Starting with pseudotime-ordered data, LEAP calculates the Pear-
son’s correlation of normalized mapped-read counts over temporal windows 
of a fixed size with different lags. The score recorded for a pair of genes is 
the maximum Pearson’s correlation over all the values of lag that the method 
considers. The software includes a permutation test to estimate false discovery 
rates. Since the correlation computed is not symmetric, this method can 
output directed networks.

 4. SCODE13. This method uses linear ODEs to represent how a regulatory 
network results in observed gene expression dynamics. SCODE relies on a 
specific relational expression that can be estimated efficiently using linear 
regression. In combination with dimension reduction, this approach leads to 
a considerable reduction in the time complexity of the algorithm.

 5. PIDC14. This method uses concepts from information theory. For every pair 
of genes x and y, given a third gene z, the method partitions the pairwise mu-
tual information between x and y into a redundant and a unique component. 
It computes the ratio between the unique component and the mutual infor-
mation. The sum of this ratio over all other genes z is the proportional unique 
contribution between x and y. The method then uses per-gene thresholds to 
identify the most important interactions for each gene. The resulting network 
is undirected since the proportional unique contribution is symmetric.

 6. SINCERITIES16. Given time-stamped transcriptional data, this method 
computes temporal changes in each gene’s expression through the distance 
of the marginal distributions between two consecutive time points using the 
Kolmogorov–Smirnov statistic. To infer regulatory connections between 
TFs and target genes, the approach uses Granger causality; that is, it uses the 
changes in the gene expression of TFs in one time window to predict how  
the expression distributions of target genes shift in the next time window.  
The authors formulate inference as a ridge regression problem. They infer the 
signs of the edges using partial correlation analyses.

 7. SCNS18. This method takes single-cell gene expression data taken over a time 
course as input and computes logical rules (Boolean formulas) that drive the 
progression and transformation from initial cell states to later cell states. By 
design, the resulting logical model facilitates the prediction of the effect of gene 
perturbations (for example, knockout or overexpression) on specific lineages.

 8. GRNVBEM17. This approach infers a Bayesian network representing the gene 
regulatory interactions. It uses a first-order autoregressive model to estimate 
the fold change of a gene at a specific time as a linear combination of the 
expression of the gene’s regulators in the Bayesian network at the previous 
time point. It infers the GRN within a variational Bayesian framework.  
This method can associate signs with its directed edges.

 9. SCRIBE19. Similar to PIDC, this approach uses ideas from information 
theory. The relevant concept here is conditioned restricted directed informa-
tion, which measures the mutual information between the past state (expres-
sion values) of a regulator and the current state of a target gene conditioned 
on the state of the target at the previous time point. To obtain efficiency for 
large datasets, the authors use an unconditioned version called RDI, followed 
by the context likelihood of relatedness algorithm35 to remove edges that cor-
respond to indirect effects. We used this strategy for experimental single-cell 
RNA-seq datasets.

 10. GRNBoost2 (ref. 8). GRNBoost2 is a fast alternative for GENIE3, especially 
suited for datasets with tens of thousands of observations. Like GENIE3, 
GRNBoost2 trains a regression model to select the most important regulators 
for each gene in the dataset. GRNBoost2 achieves its efficiency by using sto-
chastic gradient boosting machine regression with early stopping regulariza-
tion to infer the network.

 11. GRISLI9. Like SCODE, this approach uses a linear ODE-based formalism. 
GRISLI estimates the parameters of the model using different ideas. Taking 

either the experimental time of the cells or estimated pseudotime as input, 
it first estimates the velocity of each cell, that is, how each gene’s expression 
value changes as each cell undergoes a dynamical process36. It then computes 
the structure of the underlying GRN by solving a sparse regression problem 
that relates the gene expression and velocity profiles of each cell.

 12. SINGE10. The authors observe that while many gene inference algorithms 
start by computing a pseudotime value for each cell, the distribution of cells 
along the underlying dynamical process may not be uniform. To address this 
limitation, SINGE uses kernel-based Granger causality regression to alleviate 
irregularities in pseudotime values. SINGE performs multiple regressions, 
one for each set of input parameters, and aggregates the resulting predictions 
using a modified Borda method.

In summary, most algorithms developed explicitly for single-cell 
transcriptomic data required the cells to be ordered by pseudotime in the 
input, with PIDC14 being an exception. These methods ideally require datasets 
corresponding to linear trajectories; some techniques recommend that data with 
branched trajectories be split into multiple linear ones before input10,19. In contrast, 
methods that had originally been developed for bulk transcriptional data did not 
impose this requirement6,7. Almost all the methods we included output directed 
networks with exceptions being PPCOR and PIDC7,14. Only five methods output 
signed networks, that is, they indicated whether each interaction was activating 
or inhibitory7,13,16–18. A number of methods inferred each pairwise interaction 
independently of the others, sometimes conditioned on the other genes7,12,14,19. 
Several other methods computed all the regulators of a gene simultaneously but 
solved the problem independently for each gene6,8–10,13,16,18.

Other methods. We next discuss other papers on this topic and our rationale for 
not including them in the comparison. We did not consider a method if it was 
supervised37 or used additional information; for example, a database of TFs and 
their targets15 or a lineage tree38. We did not include methods that output a single 
GRN without any edge weights21,24, since any such approach would yield just a 
single point on a precision-recall curve. Other than SCNS, we did not consider 
methods that output Boolean networks21,38,39.

BoolODE: converting Boolean models to ODEs. GeneNetWeaver23,40,41 is a widely 
used method to simulate bulk transcriptomic data from GRNs. GeneNetWeaver 
has also been applied in single-cell analysis14,16,17,21,22 but has limitations, as we have 
demonstrated (Supplementary Fig. 1). To deal with this challenge, we develop a 
method called BoolODE that systematically and accurately converts a Boolean 
model into a system of stochastic differential equations (SDEs).

We start this section by giving an overview of GeneNetWeaver. Next, we 
describe our BoolODE framework that we have developed and highlight its 
differences with GeneNetWeaver. We end this section by summarizing BoolODE 
and the reasons we prefer it over GeneNetWeaver.

GeneNetWeaver. This method starts with a network of regulatory interactions 
among TFs and their targets. It computes a connected, dense subnetwork around a 
randomly selected seed node and converts this network into a system of differential 
equations. To express this network in the form of ODEs, it assigns each node 
i in the network a ‘gene’ variable (xi) representing the level of messenger RNA 
expression and a ‘protein’ variable (pi) representing the amount of TF produced  
by protein translation as follows:

d xi½ 
dt

¼ m f Rið Þ � lx xi½ 

d pi½ 
dt

¼ r xi½  � lp pi½ 

where m is the mRNA transcription rate, lx is the mRNA degradation rate, r is the 
protein translation rate and lp is the protein degradation rate. In the first equation, 
Ri denotes the set of regulators of node i. The nonlinear input function f(Ri) 
captures all the regulatory interactions controlling the expression of node i (ref. 41); 
we specify it below.

If there are N regulators for a given gene, there are 2N possible configurations 
of how the regulators can bind to the gene’s promoter. Considering cooperative 
effects of regulator binding, the probability (Pr) of each configuration S 2 2Ri

I
, the 

powerset of Ri, is given by the following equation42:

Pr Sð Þ ¼
Q

q2S q½ =kð Þn

1þP
T

Q
q2T q½ =kð Þn

where k and n are the Hill threshold and Hill coefficient, respectively. Here, 
we use q to denote a single regulator in the configuration S and the product in 
the numerator ranges over all regulators that are present (bound) in S. In the 
summation in the denominator of this equation, the set T ranges over all members 
of the powerset 2Ri

I
 other than the empty set. GeneNetWeaver further introduces 

a randomly sampled parameter αS∈ [0,1] to specify the efficiency of transcription 
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activation by a specific configuration S of bound regulators. Thus, the function f(Ri) 
thus takes the following form:

f Rið Þ ¼
X

S22Ri
αS Pr Sð Þ

Next, GeneNetWeaver adds a noise term to each equation to mimic stochastic 
effects in gene expression23. In addition, to create variations among individual 
experimental samples, GeneNetWeaver recommends adopting a multifactorial 
perturbation23 that increases or decreases the basal activation of each gene in the 
GRN simultaneously by a small, randomly selected value. GeneNetWeaver removes 
this perturbation after the first half of the simulation. Simulating this system of 
SDEs generates the requisite gene expression data.

BoolODE uses Boolean models to create simulated datasets. To generate simulated 
time course data for our analysis, we used the GeneNetWeaver framework with 
one critical difference and one minor variation. The form of the equations used by 
BoolODE is identical to that of GeneNetWeaver. The critical difference is that we 
do not sample the αS parameters in the above equation randomly; that is, we do not 
combine the regulators of each gene using a random logic function. Instead, we use 
the fact that in both the artificial networks and the literature-curated models, we 
know the Boolean function that specifies how the states of the regulators control the 
state of the target genes. Moreover, we can express any arbitrary Boolean function 
in the form of a truth table relating the input states (that is, activities of TFs) to the 
output state (the activity of target gene). For a gene with N regulators in its Boolean 
function, we explore all 2N combinations of TF states and evaluate the transcriptional 
activity of each specific regulator configuration. Since the value of the Boolean 
function is the logical disjunction (‘or’) of all these values, we set the α value to 
one (respectively, zero) for every configuration that evaluates to ‘on’ (respectively, 
‘off ’). The following example illustrates our approach. Consider a gene X with two 
activators (P and Q) and one inhibitor (R), represented by the following rule:

X ¼ P _ Qð Þ ^ : Rð Þ

The truth table corresponding to this rule along with the α parameters  
is shown in Supplementary Table 5. Therefore, the ODE governing the time  
dynamics of gene X is

d X½ 
dt ¼ m

α0 þ αP P½  þ αQ Q½  þ αR R½  þ αPQ P½  Q½ þ
αPR P½  R½  þ αQR Q½  R½  þ αPQR P½  Q½  R½ 

1þ P½ þ Q½ þ R½ þ P½  Q½ þ P½  R½ þ Q½  R½ þ P½  Q½  R½ 

0
B@

1
CA

�lx X½  ¼ m P½ þ Q½ þ P½  Q½ 
1þ P½  þ Q½  þ R½  þ P½  Q½ 
þ P½  R½  þ Q½  R½  þ P½  Q½  R½ 

0
BB@

1
CCA� lx X½ 

since only αP, αQ and αPQ have the value one and every other parameter has  
the value zero.

Next, we discuss the minor variation of BoolODE from GeneNetWeaver, which 
is in how we sample kinetic parameters. The GeneNetWeaver equations use four 
kinetic parameters: one each for mRNA transcription, protein translation and 
mRNA and protein degradation rates. Saelens et al.20 sample them uniformly from 
parameter specific intervals. Independently for every dataset, we sample each 
parameter from a normal distribution using the value shown in Supplementary 
Table 6 as the mean and a standard deviation of up to 10% of this mean value. 
Within a single dataset and for all simulations for that dataset, we fix each 
parameter (for example, mRNA degradation rate) for all genes. We choose the 
values in Supplementary Table 6 so as to achieve the following characteristics: 
The maximal steady state achievable by the mRNAs is two (the value of m/lx), of 
the proteins is ten (the value of r/lp), and the time scale of protein production is 
ten times that of the mRNAs (since the characteristic time scale of production is 
inversely proportional to the degradation rate).

To create stochastic simulations, we use the formulation proposed by  
Saelens et al.20 to modify the ODE expressions as follows:

d xi½ 
dt

¼ mf Rið Þ � lx xi½  þ s
ffiffiffiffiffiffiffi
xi½ 

p
ΔWt

d pi½ 
dt

¼ r xi½  � lp pi½  þ s
ffiffiffiffiffiffiffi
pi½ 

p
ΔWt

ΔWt ¼ N 0; hð Þ

where s is the noise strength. We use s = 10 in our simulations. We use the  
Euler–Maruyama scheme for numerical integration of the SDEs with a time  
step of h = 0.01.

Defining a single cell. We define the vector of gene expression values corresponding 
to a particular time point in a model simulation as a single cell. For every analysis, 

we sample one time point; that is, one cell from a single simulation. Using this 
procedure, for a dataset generated from 5,000 simulations, we can obtain up  
to 5,000 cells.

Creating GeneNetWeaver simulations for comparison with BoolODE. To simulate a 
synthetic network using GeneNetWeaver, we used its edge list as the input network 
to GeneNetWeaver. To create the simulations, we used the default options of the 
noise parameter (0.05) and multifactorial perturbations. We only performed 
wildtype simulations and used the DREAM4 time series output format for 
comparison with the BoolODE output.

Summary. We developed the BoolODE approach to convert Boolean functions 
specifying a GRN directly to ODE equations. Our proposed BoolODE pipeline 
accepts a file describing a Boolean model as input, creates an equivalent ODE 
model, adds noise terms and numerically simulates a stochastic time course. 
Different model topologies can produce different numbers of steady states. Since 
we carry out stochastic simulations, we perform a large number of simulations 
in an attempt to ensure that we can reach every steady state. Our analysis of the 
trajectories computed by BoolODE on datasets from curated models demonstrates 
the success of our approach in this regard (Supplementary Note 2.1). We prefer 
BoolODE over a direct application of GeneNetWeaver to create datasets from 
synthetic networks and datasets from curated models for three reasons: (1) a  
dense regulatory subnetwork computed around a randomly selected node,  
as used by GeneNetWeaver, may not correspond to a real biological process;  
(2) GeneNetWeaver introduces a random, initial, multifactorial perturbation and 
removes it halfway to create variations in the expression profiles of genes across 
samples. This stimulation may not correspond to how single-cell gene expression 
data is collected and (3) GeneNetWeaver’s SDEs do not appear to capture single-cell  
expression trajectories, as we have shown in Supplementary Fig. 1d).

Datasets. A major challenge that arises when we evaluate GRN inference 
algorithms for single-cell RNA-seq data is that the ‘ground truth’, that is, the 
network of regulatory interactions governing the dynamics of genes of interest, is 
usually unknown. Consequently, it is a common practice to create artificial graphs 
or extract subnetworks from large-scale transcriptional networks.

To address this challenge, we used three sets of networks that serve as the 
ground truth for GRN inference. The first group included six ‘toy’ networks with 
specific topologies that give rise to different cellular trajectories with predictable 
qualitative properties20. For the second set of networks, we curated four published 
Boolean models that explore gene regulatory interactions underlying various 
developmental and tissue differentiation processes. Mutual inhibition between a 
pair of genes is a key characteristic of each of these models; this type of relationship 
is important in creating branching gene expression trajectories. The regulatory 
networks underlying the Boolean models serve as the ground truth during 
evaluation. We used the third group of networks for experimental scRNA-seq 
datasets. We matched each scRNA-seq dataset with an appropriate ChIP–seq-
derived network connecting TFs to their targets; we ensured that the ChIP–seq 
data was collected in the same or similar cell type as the scRNA-seq measurements. 
In addition, we used noncell-type-specific transcriptional regulatory networks43–45 
as well as the functional interactions in the STRING46 database as the ground truth.

Creating datasets from synthetic networks. We now describe how we selected 
synthetic networks, converted these networks into systems of SDEs, simulated 
these systems, and preprocessed the resulting datasets for input to GRN  
inference algorithms.

Selecting networks. To create synthetic datasets exhibiting diverse temporal 
trajectories, we use six ‘toy’ networks created in Dynverse, a comparison of 
pseudotime inference algorithms20 (Supplementary Fig. 1 and Supplementary  
Table 1). When simulated as SDEs, we expect the models produce to trajectories 
with the following qualitative properties:

 1. Linear. A gene activation cascade that results in a single temporal trajectory 
with distinct final and initial states.

 2. Linear long. Similar to linear but with a larger number of intermediate genes.
 3. Cycle. An oscillatory circuit that produces a linear trajectory where the final 

state overlaps with the initial state.
 4. Bifurcating. A network that contains a mutual inhibition motif between two 

genes resulting in two distinct branches starting from a common trajectory.
 5. Trifurcating. Mutual inhibition motifs involving three genes in this network 

result in three distinct steady states.
 6. Bifurcating converging. An initial bifurcation creates two branches, which 

ultimately converge to a single steady state.

We then used the following approach to simulate the above networks.

Converting networks into SDE models and simulating them. We manually convert 
each of these networks to a Boolean model: we set a node to be ‘on’ if and only if 
at least one activator is ‘on’ and every inhibitor is ‘off ’. We simulate these networks 
using BoolODE. We use the initial conditions specified in the Dynverse software20 
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(Supplementary Table 6). To sample cells from the simulations that capture various 
locations along a trajectory, we limit the duration of each simulation according 
to the characteristics of the model (Supplementary Table 7). For example, we 
simulated the linear long network for 15 time units but the linear network, which 
has fewer nodes, for five time units.

Comparing simulated datasets with the expected trajectories from synthetic 
networks. It is common to visualize simulated time courses from ODE/SDE models 
as time course plots or phase plane diagrams with two or three dimensions. The 
latter are useful to qualitatively explore the state-space of a model at hand. The 
recent popularity of t-distributed stochastic neighbor embedding (t-SNE) as a tool 
to visualize and cluster high dimensional scRNA-seq data motivated us to consider 
this technique to visualize simulated single-cell data. Supplementary Fig. 1b shows 
two-dimensional t-SNE visualizations of each of the toy models.

Preprocessing datasets from synthetic networks for GRN algorithms. Pseudotime 
inference methods perform well for linear and bifurcating trajectories20. However, 
even the best-performing pseudotime algorithm fails to accurately identify more 
complex trajectories such as cycle and bifurcating converging. Therefore, we sought 
to develop an approach for preprocessing synthetic datasets that mimicked a real 
single-cell gene expression pipeline while isolating the GRN inference algorithms 
from the limitations of pseudotime techniques. Accordingly, we used the following 
four-step approach to generate single-cell gene expression data from each of the  
six synthetic networks:

 1. Using the values in Supplementary Table 6 as the means, and 10% of these 
values as the standard deviations, we sampled a parameter set. We then used 
BoolODE to perform 5,000 simulations using this parameter set.

 2. We represented each simulation as a |G| × |C| matrix, where G is the set of 
genes in the model and C is the set of cells in the simulation. We converted 
each of the 5,000 matrices into a one-dimensional vector of length |G| × |C| 
and clustered the vectors using k-means clustering with k set to the number 
of expected trajectories for each network. For example, the bifurcating net-
work in Supplementary Fig. 1b has two distinct trajectories, so we used k = 2. 
We use the cluster information in step 4.

 3. We then randomly sampled one set each of 100, 200, 500, 2,000 and 5,000 
cells from the 5,000 simulations.

 4. Finally, we set as input to each algorithm the |G| × |D| matrix, where G is 
the set of genes in the model and D is the set of randomly sampled cells. For 
those methods that require time information, we specified the simulation 
time at which the cell was sampled along with the trajectory (cluster) to 
which each cell belonged.

We repeated this procedure on ten different sampled parameter sets to obtain 
50 datasets. We ran each algorithm on these 50 datasets.

Note that we used the same set of sampled parameters for all simulations in a 
dataset and that we varied parameters only across datasets. As an alternative, we 
considered sampling a different set of parameters per simulation since they may 
vary from cell to cell. However, this approach caused so much variation that we 
could not recapitulate the steady states of the Boolean models in the BoolODE-
created data.

Note that we clustered simulations themselves (with each simulation 
represented by the complete time courses of all genes) before we sampled cells.  
The reason we adopted this ordering is that the goal of the clustering was to 
partition the cells such that each group would (1) correspond to a distinct steady 
state of the network and (2) contain cells sampled from the entire time course 
of the simulations. Clustering the simulations helped us to compute these types 
of cluster. Subsequently sampling one cell from each simulation permitted us to 
assign each cell to the cluster to which its simulation belonged and satisfy both 
properties we desired.

In contrast, if we had sampled cells and then clustered them, we were 
concerned that some cells would have belonged to a cluster corresponding only to 
early time points and some only to intermediate, resulting in the possibility that 
some steady states would not have any clusters. Alternatively, we would have had 
to increase the number of clusters we sought to compute, which may also have 
resulted in clusters corresponding only to early or only to intermediate time points.

Creating datasets from curated models. While the synthetic models presented above 
are useful for generating simulated data with a variety of specific trajectories, 
these networks do not correspond to any real cellular process. To create simulated 
datasets that better reflect the characteristics of single-cell transcriptomic datasets, 
we turned to published Boolean models of GRNs, as these models are reflective of 
the real ‘ground-truth’ control systems in biology.

Since tissue differentiation and development are active areas of investigation by 
single-cell methods, we examined the literature from the past ten years to look for 
published Boolean models of GRNs involved in these processes. We selected four 
published models for analysis. Supplementary Table 2 lists the size of the regulatory 
networks and the number of steady states. Below, we discuss the biological 
background, the interpretation of model steady states, and the expected type of 
trajectories for each of these Boolean models.

mCAD. Giacomantonio et al. explored mCAD as a consequence of the expression 
of regulatory TFs along an anterior-posterior gradient25. The model contains five 
TFs connected by 14 interactions, captures the expected gene expression patterns 
in the anterior and posterior compartments, respectively, and results in two steady 
states. Figure 3 displays the regulatory network underlying the model along with a 
t-SNE visualization of the trajectories simulated using BoolODE. In Supplementary 
Note 2.1, we show that the two clusters observed in the t-SNE visualization 
correspond to the two biological states captured by the Boolean model.

VSC development. Lovrics et al. investigated the regulatory basis of VSC 
development26. The model consisting of eight TFs involved in ventralization 
contains 15 interactions, all of which are inhibitory. It succeeds in accounting for 
five distinct neural progenitor cell types. We expect to see five steady states from 
this model. Figure 3 shows the regulatory network underlying the model along 
with the t-SNE visualization of the trajectories simulated using BoolODE. In 
Supplementary Note 2.1, we show that the five steady-state clusters observed in the 
t-SNE visualization correspond to the five biological states captured by the model.

HSC differentiation. Krumsiek et al. investigated the GRN underlying myeloid 
differentiation27. The proposed model has 11 TFs and captures the differentiation 
of multipotent myeloid progenitor (CMP cells) into erythrocytes, megakaryocytes, 
monocytes and granulocytes. The Boolean model exhibits four steady states, each 
corresponding to one of the four cell types mentioned above. Figure 3 shows the 
regulatory network of the HSC model along with the t-SNE visualization of the 
trajectories simulated using BoolODE. In Supplementary Note 2.1, we show that 
the four steady-state clusters observed in the t-SNE visualization correspond to the 
four biological states captured by the Boolean model.

GSD. Rios et al. modeled the gonadal differentiation circuit that regulates the 
maturation of the bipotential gonadal primordium into either male (testes) or 
female (ovary) gonads28. The model consists of 18 genes and a node representing 
the urogenital ridge, which serves as the input to the model. For the wildtype 
simulations, the Boolean model predominantly exhibits two steady states 
corresponding to the Sertoli cells (male gonad precursors) or the granulosa cells 
(female gonad precursors), and one rare state corresponding to a dysfunctional 
pathway. Figure 3 shows the regulatory network of the GSD model along with the 
t-SNE visualization of the trajectories simulated using BoolODE. In Supplementary 
Note 2.1, we show that the two steady-state clusters observed in the t-SNE 
visualization correspond to the two predominant biological states capture by  
the Boolean model.

Preprocessing datasets from curated models for GRN algorithms. As with the 
datasets from synthetic networks, we used the following approach to generate 
simulated datasets for each of the four curated models. Using the values in 
Supplementary Table 6 as means and 5% of these values as the standard deviations, 
we sampled a parameter set. We used BoolODE to perform 2,000 simulations and 
randomly sampled one cell from each simulation. We repeated this procedure on 
ten different sampled parameter sets to obtain ten datasets. To closely mimic the 
preprocessing steps performed for real single-cell gene expression data, we use the 
following steps for each dataset:

 1. Pseudotime inference using Slingshot. In the case of datasets from synthetic 
networks, we used the simulation time directly for those GRN inference 
methods that required cells to be time-ordered. In contrast, for datasets from 
curated models, we ordered cells by pseudotime, which we computed using 
Slingshot29. We selected Slingshot for pseduotime inference due to its proven 
success in correctly identifying cellular trajectories in a recent comprehensive 
evaluation of this type of algorithm20. Slingshot needs a lower dimensional 
representation of the gene expression data as input. In addition, if the cells 
belong to multiple trajectories, Slingshot needs a vector of cluster labels for 
the cells, as well as the cluster labels for cells in the start and end states in the 
trajectories. To obtain these additional input data for Slingshot, we used the 
following procedure:

(a) We use t-SNE on the |G| × |C| matrix representing the data to obtain a two-
dimensional representation of the cells.

(b) We performed k-means clustering on this lower dimensional representa-
tion of the cells with k set to one more than the expected number of trajec-
tories. For example, since we knew that the GSD model had a bifurcating 
trajectory, we used k = 3.

(c) We computed the average simulation time of the cells belonging to each of 
the k clusters. We set the cluster label corresponding to the smallest average 
time as the starting state and the rest of clusters as ending states.

(d) We then ran Slingshot with the t-SNE-projected data and starting and 
ending clusters as input. We obtained the trajectories to which each cell 
belonged and its pseudotime as output from Slingshot.
Figure 3d displays the results for one dataset of 2,000 cells for each of the 
four models. We observed that Slingshot does a very good job of correctly 
identifying cells belonging to various trajectories. Further, the pseudo-
time computed for each cell by Slingshot is highly correlated with the 
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simulation time at which we sampled the cell (Supplementary Table 8). 
Note that the k-means clustering whose results we display in Fig. 3c is dif-
ferent from the k-means clustering described above. To obtain the results 
in Fig. 3c, we followed the procedure described for synthetic models: we 
clustered the simulations (complete time courses) themselves, with k set 
to the number of steady states. Our goal was to confirm visually that each 
cluster contained cells spanning the entire length of the simulation. In 
contrast, before applying Slingshot, we clustered the (lower dimensional 
representation of the samples) cells; we set k as described above so that we 
could input to Slingshot one starting cluster and as many ending clusters as 
the number of steady states.

 2. Inducing dropouts in datasets from curated models. We used the same 
procedure as Chan et al.14 to induce dropouts, which are commonly seen in 
single-cell RNA-seq datasets, especially for transcripts with low abundance47. 
We created a dataset with a dropout rate of q as follows: for every gene, we 
sorted the cells in increasing order of that gene’s expression value. We set 
the expression of that gene in each of the lowest qth percentile of cells in this 
order to zero with a q% chance. For example, choosing q = 50 resulted in a 
50% chance of setting a gene’s expression values below the 50th percentile 
to 0, which affected about 25% of the dataset. Note that we used the same 
parameter twice simply for convenience; we do not expect the trends we 
find to deviate considerably if we had used two different parameters for 
percentile and for probability. We applied two different dropout rates: q = 50 
and q = 70. We used Slingshot to recompute pseudotime for each dataset 
with dropouts. We did note a considerable decrease in this correlation when 
we added dropouts to the simulated datasets, for all but the GSD network 
(Supplementary Table 8).

At the end of this step, we had 30 datasets with 2,000 cells for each of the four 
models: ten datasets without dropouts, ten with a dropout rate of q = 50 and ten 
with a rate of q = 70.

Collecting experimental single-cell RNA-seq datasets and ground-truth networks. 
Experimental single-cell RNA-seq datasets. We obtained five different single-cell 
RNA-seq datasets, three in mouse and two in human (Supplementary Table 3). 
There were a total of seven cell types across these datasets. We preprocessed each 
dataset using the procedure described in the corresponding paper. In general, if 
the publication did not provide normalized expression values, we log-transformed 
the transcripts per kilobase million or fragments per kilobase million counts using 
a pseudocount of 1 and used the results as the expression values. We additionally 
filtered out any genes that were expressed in fewer than 10% of the cells. We 
describe the details of the datasets and the pseudotime computation below:

 1. mHSCs48. We obtained the normalized expression data for 1,656 HSPCs 
across 4,773 genes from the supplementary data provided by the authors.  
We used the first three dimensions from DiffusionMap to compute pseudo-
time values. We used the E-SLAM population as the starting cell type and 
computed pseudotime using Slingshot along three lineages, namely erythroid, 
granulocyte-monocyte and lymphoid. We inferred GRNs for each lineage 
independently.

 2. Mouse embryonic stem cells (mESC)49. This dataset contains scRNA-seq  
expression measurements for 421 primitive endoderm (PrE) cells differenti-
ated from mESCs, collected at five different time points (0, 12, 24, 48 h up to 
72 h). SCODE13, SINGE10 and GRISLI9 used this dataset to evaluate their per-
formance. We computed pseudotime using Slingshot with cells measured at 
0 h as the starting cluster and the cells measured at 72 h as the ending cluster.

 3. Mouse dendritic cells50. This dataset corresponds to over 1,700 bone-marrow 
derived dendritic cells under various conditions. Following SCRIBE19, we 
used the lipopolysaccharide stimulated wildtype cells measured at 1, 2, 4 and 
6 h. We then computed the pseudotime using Slingshot with cells measured at 
1 h as the starting cluster and the cells measured at 6 h as the ending cluster.

 4. hHEPs51. This dataset is from an scRNA-seq experiment on induced 
pluripotent stem cells (iPSCs) in two-dimensional culture differentiating to 
hepatocyte-like cells. The dataset contains 425 scRNA-seq measurements 
from multiple time points: days 0 (iPSCs), 6, 8, 14 and 21 (mature hepato-
cyte-like). We computed the pseudotime using Slingshot with cells measured 
on day 0 (iPSCs) as the starting cluster and the cells measured on 21 (mature 
hepatocytes) as the ending cluster.

 5. hESCs52. This dataset is from a time course scRNA-seq experiment derived 
from 758 cells along the differentiation protocol to produce definitive 
endoderm cells from human embryonic stem cells, measured at 0, 12, 24, 36, 
72 and 96 h. We computed the pseudotime with cells measured at 0 h as the 
starting cluster and the cells measured at 96 h as the ending cluster. SCODE13 
used this dataset to evaluate its performance.

Once we obtained the pseduotime values for the cells in each dataset, we 
computed which genes had varying expression values across pseudotime. We 
used the general additive model implemented in the ‘gam’ R package to compute 
the variance and the P value of this variance. We used the Bonferroni method 
to correct for testing multiple hypotheses. Supplementary Table 3 provides the 

statistics on the number of significantly varying genes and TFs in each dataset after 
using a corrected P value cutoff of 0.01. We selected genes for GRN inference in 
two different ways.

 i. We considered all genes with a P value less than 0.01. We selected variance 
thresholds so that we obtained 500 and 1,000 highly varying genes. We 
recorded the number of TFs in these sets.

 ii. We started by including all TFs whose variance had P value at most 0.01. 
Then, we added 500 and 1,000 additional genes as in the previous option.  
This approach enabled the GRN methods to consider TFs that may have a 
modest variation in gene expression but still regulate their targets.

After applying a GRN inference algorithm to a dataset, we only considered 
interactions outgoing from a TF in further evaluation.

Ground-truth networks collection and processing. In the GRN inference literature, 
a common practice is to evaluate the accuracy of a resulting network by comparing 
its edges to an appropriate database of TFs and their targets. For example, SCODE 
used the RikenTFdb and animalTFDB resources to define ground-truth networks 
for mouse and human gene expression data, respectively13. We used three types of 
ground-truth dataset (Supplementary Table 4).

 1. Cell-type-specific. For each experimental scRNA-seq dataset, we searched 
the ENCODE, ChIP-Atlas and ESCAPE databases for ChIP–seq data from 
the same or similar cell type. We also included the loss-of-function/gain-of-
function (lof/gof) dataset from the ESCAPE database.

 2. Nonspecific. Here, we used the following resources:
(a) DoRothEA45 integrates ChIP–seq and transcriptional regulatory informa-

tion from multiple sources. We considered two levels of evidence in this 
database: A (curated/high confidence) and B (likely confidence).

(b) RegNetwork43 incorporates genome-wide TF–TF, TF–gene, TF–micro 
RNA regulatory relationships in human and mouse collected from various 
sources. We used the TF–TF and TF–gene interactions for our analysis.

(c) TRRUST44 contains TF–target interactions collected based on text-mining 
followed by manual curation for human and mouse.

 3. Functional. Finally, we used the human and mouse STRING46 networks. An 
interaction here is functional and need not correspond to transcriptional reg-
ulation. We selected this type of ground-truth network due to our observation 
that many GRN methods predict indirect interactions for Boolean models.

Evaluation pipeline. One of the major challenges we faced was that the GRN 
inference methods we included in this evaluation were implemented in a variety 
of languages such as R, MATLAB, Python, Julia and F#. To obtain an efficient 
and reproducible pipeline, we Dockerized the implementation of each algorithm. 
Supplementary Table 9 contains details on the specific software or GitHub commit 
versions we downloaded and used in our pipeline. For methods implemented in 
MATLAB, we created MATLAB executable files (.mex files) that we could execute 
within a Docker container using the MATLAB Runtime. We further studied the 
publications and the documentation of the software (and the source code, on 
occasion) to determine how the authors recommended that their methods be used. 
We implemented these suggestions as well as we could. We provide more details in 
Supplementary Note 4.

Inputs. For datasets from synthetic networks and for datasets from curated models, 
we provided the gene expression values obtained from the simulations directly after 
optionally inducing dropouts in the second type of data. Eight out of the 12 methods 
also required some form of time information for every cell in the dataset (Fig. 6). 
Of these, two methods (GRNVBEM and LEAP) only required cells to be ordered 
according to their pseudotime and did not require the pseudotime values themselves.

Parameter estimation. Six of the methods also required one or more parameters 
to be specified. To this end, we performed parameter estimation for each of these 
methods separately for datasets from synthetic networks, datasets from curated 
models and real datasets, and provided them with the parameters that resulted in 
the best AUPRC values. See Supplementary Note 1.2 for details.

Output processing. Ten of the GRN inference methods output a confidence score for 
every possible edge in the network, either as an edge list or as an adjacency matrix, 
which we converted to a ranked edge list. We gave the same rank to edges with the 
same confidence scores.

Performance evaluation. We used a common evaluation pipeline across all the 
datasets considered in this paper. We evaluated the result of each algorithm using 
the following criteria:

 1. AUPRC, AUROC. We computed areas under the precision-recall and receiver 
operating characteristic curves using the edges in the relevant network as 
ground truth and ranked edges from each method as the predictions. We 
ignored self-loops for this analysis since some methods such as PPCOR 
always assigned the highest rank to such edges and some other methods such 
as SINGE always ignored them. Most of the networks we considered have a 
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density of 0.3 or less; that is, the positive-to-negative ratio is worse than 1:3. 
Since the GRN inference problem for these networks is moderately imbal-
anced, we focus on AUPRC scores in the main text53,54. For readers who are 
interested in AUROC plots, we provide them as supplementary figures (only 
for the synthetic networks and curated models).

 2. Stability across multiple runs. We executed each algorithm ten times on a 
dataset to ask if the inferred networks changed from one run to another. We 
represented every result by the corresponding ranked list of edges. For every 
pair of results, we computed the Spearman’s correlation of the ranked lists. 
We performed this analysis for curated models and for experimental datasets.

 3. Identifying top-k edges. We first identified top-k edges for each method, 
where k equaled the number of edges in the ground-truth network (exclud-
ing self-loops). In cases where multiple edges were tied for a rank of k, we 
considered all of them. If a method provided a confidence score for fewer 
than k edges, we used only those edges. For experimental single-cell RNA-seq 
datasets, this number varied from one ground-truth dataset to another.

 4. Stability across multiple datasets. For each method, once we obtained the set 
of top-k edges for each dataset, we then computed the Jaccard index of every 
pair of these sets. We used the median of the values as an indication of the 
robustness of a method’s output to variations in the simulated datasets from a 
given synthetic network or curated model.

 5. Early precision (EP) and EPR. We defined early precision as the fraction of 
true positives in the top-k edges. We also computed the EPR, which repre-
sents the ratio of early precision value and the early precision for a random 
predictor for that model. A random predictor’s precision is the edge density 
of the ground-truth network.

 6. Early precision of signed edges. We desired to check whether there were any 
differences in how accurately a GRN inference algorithm identified activating 
edges in comparison to inhibitory edges. To this end, we computed the top-ka 
edges from the ranked list of edges output by each method, where ka is the 
number of activating edges in the ground-truth network. In this step, we ig-
nored any inhibitory edges in the ground-truth network. We defined the early 
precision of activating edges as the fraction of true edges of this type in the 
top-ka edges. We used an analogous approach to compute early precision of 
inhibitory edges. We also computed the EPR for these values. We performed 
this analysis only for curated models.

Datasets with multiple trajectories. Seven methods we evaluated require 
pseudotime-ordered cells (Fig. 6), but cannot directly handle data with branched 
trajectories. In these cases, as suggested by many of these methods, we separated 
the cells into multiple linear trajectories using Slingshot and applied the algorithm 
to the set of cells in each trajectory individually. To combine the GRNs, for each 
interaction, we recorded the largest score for it across all the networks and ranked 
the interactions by these values. In the case of GRISLI, which outputs ranked edges, 
for each interaction, we took the best (smallest) rank for it across all the networks.

As an alternative, we merged all the trajectories into one set of cells and 
executed each algorithm on this dataset. We performed this analysis for the three 
synthetic networks with multiple trajectories (bifurcating, bifurcating converging 
and trifurcating).

Shuffling simulation times. We investigated the effect of shuffling the pseudotime 
values on the performance of methods that require this information. We 
used three window sizes, namely, 15, 30 and 45%, which defined the range of 
indices to sample from as a fraction of the total number of cells in a dataset. 
Thus, for a dataset with 2,000 cells, using a window size of 30% resulted in a 
range of 2,000 × 0.3 = 600. Therefore, after sorting the cells in increasing order 
of pseudotime, for every index i, we sampled a new index from the interval 
[max(0,i − 300),min(i + 300,2,000)] and swapped the cells at these two indices.  
We performed this analysis for the three synthetic networks with a single trajectory 
(linear, cycle and Linear long). Here each original (unshuffled) pseudotime was 
equal to the simulation time.

Procedure for creating Fig. 6. We chose the following measures presented in earlier 
sections for summarize our key findings:

Accuracy. We computed the median of the per-network median AUPRC value 
obtained for datasets containing 2,000 and 5,000 cells for the six synthetic networks 
(Fig. 2). For datasets from curated models, we used the median of the per-model 
median AUPRC value obtained for ten datasets without dropouts for each the 
four datasets from curated models (Fig. 4). For experimental single-cell RNA-seq 
datasets, we used the median EPR obtained for each dataset-evaluation network 
combination (all significantly varying TFs and the 500 most-varying genes) (Fig. 5).  
We have ordered the algorithms by their median EPR score across experimental 
single-cell RNA-seq datasets followed by median AUPRCs in datasets from 
synthetic networks.

Stability. We present four such measures: (1) across datasets: the median score  
of the Jaccard index obtained for all six datasets from synthetic networks (Fig. 2);  
(2) across runs: median Spearman’s correlation of outputs for each of the four 

datasets from curated models (one dataset each, Supplementary Note 3.4);  
(3) across dropouts: median percentage decrease in AUPRC for the q = 50 dropout 
rate compared to no dropouts (Supplementary Fig. 4) and (4) across pseudotime: 
median percentage decrease in AUPRC after shuffling time values within a 30% 
window compared to the original simulation time for datasets from synthetic 
networks (Supplementary Fig. 11).

Scalability. Median running times and memory consumption for three different 
scRNA-seq datasets, namely hHEP, hESC and mHSC-E, which contain 400, 750 
and 1,000 cells, respectively (Supplementary Fig. 7). Missing values indicate that 
either the method did not complete even after running for over a day or it gave a 
runtime error.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
The datasets simulated from the synthetic networks and curated models and 
the processed experimental single-cell gene expression datasets are available 
on Zenodo at https://doi.org/10.5281/zenodo.3378975. The gene experimental 
scRNA-seq datasets we downloaded from Gene Expression Omnibus had the 
accession numbers GSE81252 (hHEP), GSE75748 (hESC), GSE98664 (mESC), 
GSE48968 (mouse dendritic cell) and GSE81682 (mHSC). Source data for Figs. 2 
and 4–6 are provided with the paper.

Code availability
A Python implementation of the BEELINE framework is available under the GNU 
General Public License v.3 at https://github.com/murali-group/BEELINE.
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