
AnAlysis
https://doi.org/10.1038/s41592-019-0690-6

1Department of Computer Science, Virginia Tech, Blacksburg, VA, USA. 2Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech,
Blacksburg, VA, USA. *e-mail: murali@cs.vt.edu

Single-cell RNA-sequencing technology has made it possible
to trace cellular lineages during differentiation and to iden-
tify new cell types1,2. A central question that arises now is

whether we can discover the gene regulatory networks (GRNs)
that control cellular differentiation and drive transitions from
one cell type to another. In such a GRN, each edge connects a
transcription factor (TF) to a gene it regulates. Ideally, the edge
is directed from the TF to the target gene, represents direct
rather than indirect regulation and corresponds to activation
or inhibition.

Single-cell expression data are especially promising for comput-
ing GRNs because, unlike bulk transcriptomic data, they do not
obscure biological signals by averaging over all the cells in a sample.
However, these data have features that pose significant difficulties;
for example, substantial cellular heterogeneity3, cell-to-cell variation
in sequencing depth, the high sparsity caused by dropouts4 and cell-
cycle-related effects5. Despite these challenges, over a dozen meth-
ods have been developed or used to infer GRNs from single-cell
data6–19. An experimentalist seeking to analyze a new dataset faces
a daunting task in selecting an appropriate inference method since
there are no widely accepted ground-truth datasets for assessing
algorithm accuracy and the criteria for evaluation and comparison
of methods are varied.

We have developed BEELINE, a comprehensive evaluation
framework to assess the accuracy, robustness and efficiency of
GRN inference techniques for single-cell gene expression data
based on well-defined benchmark datasets (Fig. 1). BEELINE
incorporates 12 diverse GRN inference algorithms. It provides an
easy-to-use and uniform interface to each method in the form of a
Docker image. BEELINE implements several measures for estimat-
ing and comparing the accuracy, stability and efficiency of these
algorithms. Thus, BEELINE facilitates reproducible, rigorous and
extensible evaluations of GRN inference methods for single-cell
gene expression data.

Results
Overview of algorithms. We surveyed the literature and bioRxiv
preprints for papers that either published a new GRN inference algo-
rithm or used an existing approach. We ignored methods that did
not assign weights or ranks to the interactions, required additional
datasets or supervision, or sought to discover cell-type-specific net-
works. We selected 12 algorithms using these criteria (Methods).

We used BEELINE to evaluate these approaches on over 400
simulated datasets (across six synthetic networks and four curated
Boolean models) and five experimental human or mouse single-
cell RNA-seq datasets. Since eight algorithms require pseudotime-
ordered cells, we used datasets (both simulated and real) that focus
on cell differentiation and development, processes in which there is
a meaningful temporal progression of cell states. We did not study
GRNs relevant to other biological processes; for example, changes in
disease states or differences among cell types.

Datasets from synthetic networks. Our motivations for using
synthetic networks were two-fold. First, we wanted to use a known
GRN that could serve as the ground truth. Second, we desired to
create in silico single-cell gene expression datasets that were isolated
from any limitations of pseudotime inference algorithms. Therefore,
we started with six synthetic networks (Supplementary Fig. 1a and
Supplementary Table 1). Simulating these networks should pro-
duce a variety of different trajectories seen in differentiating and
developing cells20. Several recent studies on GRN inference14,16,17,21,22
have used GeneNetWeaver23 to create in silico single-cell gene
expression datasets. However, when we simulated the six synthetic
networks using GeneNetWeaver (Methods), we observed no dis-
cernible trajectories in the two-dimensional projections of these
data (Supplementary Fig. 1d).

We therefore used our BoolODE approach (Methods) to simu-
late these networks. For each gene in a GRN, BoolODE requires a
Boolean function that specifies how that gene’s regulators combine to

Benchmarking algorithms for gene regulatory
network inference from single-cell
transcriptomic data
Aditya Pratapa   1, Amogh P. Jalihal   2, Jeffrey N. Law   2, Aditya Bharadwaj1 and T. M. Murali   1*

We present a systematic evaluation of state-of-the-art algorithms for inferring gene regulatory networks from single-cell tran-
scriptional data. As the ground truth for assessing accuracy, we use synthetic networks with predictable trajectories, litera-
ture-curated Boolean models and diverse transcriptional regulatory networks. We develop a strategy to simulate single-cell
transcriptional data from synthetic and Boolean networks that avoids pitfalls of previously used methods. Furthermore, we col-
lect networks from multiple experimental single-cell RNA-seq datasets. We develop an evaluation framework called BEELINE.
We find that the area under the precision-recall curve and early precision of the algorithms are moderate. The methods are bet-
ter in recovering interactions in synthetic networks than Boolean models. The algorithms with the best early precision values
for Boolean models also perform well on experimental datasets. Techniques that do not require pseudotime-ordered cells are
generally more accurate. Based on these results, we present recommendations to end users. BEELINE will aid the development
of gene regulatory network inference algorithms.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods 147

mailto:murali@cs.vt.edu
http://orcid.org/0000-0002-3323-6250
http://orcid.org/0000-0002-0503-8687
http://orcid.org/0000-0003-2828-1273
http://orcid.org/0000-0003-3688-4672
http://www.nature.com/naturemethods

AnAlysis NATuRE METhods

control its state. We represent each Boolean function as a truth table,
which we convert into a nonlinear ordinary differential equation
(ODE). This approach provides a reliable method to capture the logi-
cal relationships among the regulators precisely in the components
of the ODE. We add noise terms to make the equation stochastic20,24.

For each network, we applied BoolODE by sampling ODE
parameters ten times and generating 5,000 simulations per param-
eter set (Methods). We created five datasets per parameter set, one
each with 100, 200, 500, 2,000 and 5,000 cells by sampling one cell
per simulation, to obtain 50 different expression datasets. Analyzing
the two-dimensional projections of these simulations reassured us
that BoolODE was successful in correctly simulating the network
models (Supplementary Fig. 1b,c and Supplementary Note 1.1).

Setting each network as the ground truth, we executed the 12
algorithms on every one of the 50 simulated datasets. For those GRN
inference methods that required time information, we provided the
simulation time at which we sampled each cell. For the bifurcating,
bifurcating converging and trifurcating networks, we ran the algo-
rithms that need time information on each trajectory individually
and combined the outputs (Methods). Six algorithms required one or
more parameters to be specified. We performed a parameter sweep
to determine the values that gave the highest median area under the
precision-recall curve (AUPRC) (Supplementary Note 1.2).

For each network–algorithm pair, Fig. 2 displays the median
AUPRC ratio (the AUPRC divided by that of a random predictor).
Supplementary Figs. 2 and 3 show the box plots of AUPRC and area
under the receiver operating characteristic curve (AUROC) val-
ues. The methods performed best for the linear network: 10 out of
12 algorithms had a median AUPRC ratio greater than 2.0. Seven

methods had a median AUPRC ratio greater than 5.0 for the linear
long network. The cycle, bifurcating converging, bifurcating and
trifurcating networks were progressively harder to infer, with no
algorithm achieving an AUPRC ratio of two or more on the last net-
work. Single-cell regularized inference using time-stamped expres-
sion profiles (SINCERITIES) obtained the highest median AUPRC
ratio for four out of the six networks. Single-cell inference of net-
works using Granger ensembles (SINGE) had the highest median
AUPRC ratio for cycle and partial information decomposition and
context (PIDC) for trifurcating.

We examined the effect of the number of cells on AUPRC by
comparing the values for 100, 200, 500 and 2,000 cells to those
for 5,000 cells (Supplementary Note 1.3). As the number of cells
increased from 100 to 500, the number of algorithms with signifi-
cantly lower AUPRC values in comparison to 5,000 cells decreased
from seven to four. The number of cells had no significant effect
on five algorithms: gene network inference with ensemble of trees
(GENIE3), GRN variational Bayesian expectation-maximization
(GRNVBEM), lag-based expression association for pseudotime-
series (LEAP), single-cell network synthesis (SCNS) and SCODE.

To examine the stability of the results, we considered the GRNs
formed by the k edges with the highest ranks, with k set to the num-
ber of edges in each synthetic network, computed the Jaccard indi-
ces of all pairs of GRNs, and recorded the medians of these values
(Fig. 2 and Methods). While SINCERITIES, SINGE and SCRIBE had
the three highest median-of-median AUPRC ratios, the networks
they predicted were relatively less stable (median Jaccard index
between 0.28 and 0.35). PPCOR and PIDC, the other two methods
in the top five, had higher median Jaccard indices of 0.62 each.

LEAP

PIDC

GRN inference methods

Predicted networks

SCODE

LEAP

PIDC
SCODE

Run algorithmsParameter search

Network motifs

Early precision

Simulated data from curated models

dynverse

Single cell RNA-seq data

Precision recall curves

Software run time
and memory usage

GB

- Across simulations
- In the presence of
 dropouts

- Across algorithms

Stability

Fig. 1 | An overview of the BeeLINe evaluation framework. We apply GrN inference algorithms to three types of data: datasets from synthetic networks,
datasets from curated Boolean models from the literature and experimental single-cell transcriptional measurements. We process each dataset through a
uniform pipeline: preprocessing, Docker containers for 12 GrN inference algorithms, parameter estimation, postprocessing and evaluation. We compare
algorithms based on accuracy (AUPrC and early precision), stability of results (across simulations, in the presence of dropouts and across algorithms),
analysis of network motifs and scalability.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods148

http://www.nature.com/naturemethods

AnAlysisNATuRE METhods

We simulated the inferred GRNs to see if they had the same
number of steady states as the ground-truth networks. Apart from
the linear network, we found that more than 60% of the GRNs
yielded more steady states than in the ground truth (Supplementary
Note 1.4). For networks with multiple steady states, there was
no clear benefit to computing a single GRN after combining all
trajectories over merging the GRNs inferred for each trajectory
(Supplementary Note 1.5).

Datasets from curated models. Dense subnetworks of large-scale
GRNs that have been used to generate simulated datasets of single-
cell gene expression14,16,17,21,22 may not capture the complex regula-
tion in any specific developmental process. To avoid this pitfall, we
selected four published Boolean models: mammalian cortical area
development (mCAD)25, ventral spinal cord (VSC) development26,
hematopoietic stem cell (HSC) differentiation27 and gonadal sex
determination (GSD)28 (Fig. 3 and Supplementary Table 2).

We confirmed that the BoolODE-simulated datasets for each
Boolean model (1) captured the same number of steady states as in the
model (Fig. 3b) and (2) matched the unique gene expression pattern
that characterized each steady state of that model, as reported in the
corresponding publication (Supplementary Note 2.1). Encouraged
by these results, we used BoolODE to create ten different datasets
with 2,000 cells for each model. For each dataset, we generated one
version with a dropout rate of q = 50 and another with a rate of q = 70
(Methods)14. We computed pseudotimes using Slingshot29 for each
dataset and provided these values to the algorithms, to mimic a real
analysis pipeline. We performed a parameter sweep and selected
the values that gave the highest median AUPRC for each model

(Supplementary Note 2.2). We then ran each of the 12 algorithms on
each of the 120 datasets (30 per model).

Figure 4 summarizes our findings for the datasets without drop-
outs. Only four methods (gene regulation inference for single-cell
with linear differential equations and velocity inference (GRISLI),
SCODE, SINGE and SINCERITIES) had a median AUPRC ratio
greater than one for the mCAD model. The reason may be the high
density of the underlying network (Supplementary Table 2). For the
VSC model, which only has inhibitory edges, three methods (PIDC,
GRNBoost2 and GENIE3) had an AUPRC ratio greater than 2.5.
These three methods also had an AUPRC ratio close to 2.0 for the
HSC model. PPCOR, GRISLI and SCRIBE tied for the highest
median AUPRC ratio of 1.4 for the GSD model. Overall, GENIE3,
GRNBoost2 and PIDC had among the highest median AUPRC
ratios for two out of the four models. SINCERITIES, SCRIBE and
SINGE, which were the best algorithms according to the AUPRC
ratios for the datasets from synthetic networks, had a close to ran-
dom median AUPRC ratio for all four curated models. We address
this trend in the Discussion.

Supplementary Figs. 4 and 5 show distributions of the AUPRC
and AUROC values for all dropout rates. To study the effect of drop-
outs, for each algorithm, we compared the distributions of AUPRC
scores across all Boolean models between q = 0 and q = 50 and
between q = 0 and q = 70. Four and seven GRN inference methods
had a statistically significant difference in AUPRC values for the 0–50
and the 0–70 comparison, respectively (Supplementary Note 2.3).
The four algorithms that were unaffected by dropout rates
(GRNVBEM, LEAP, SCRIBE and SINCERITIES) had worse-than-
random AUPRC values on the mCAD and VSC datasets.

Next, we studied the early precision and early precision ratio
(EPR) values of the top-k predictions (Methods) for each of the
four models. In at least one of the four models, 11 algorithms had
a median EPR less than or close to one; that is, similar to a ran-
dom predictor (black squares in Fig. 4). In the 29 cases when the
median EPR was at least one, it was 1.5 or larger only 16 times. The
mCAD model had the smallest number of algorithms (two, GRISLI
and SCODE) with median EPR larger than one. For datasets with
dropouts, we did not see any clear trends in terms of smaller or
larger early precision values compared to the dropout-free results
(Supplementary Fig. 6).

We also investigated if the GRN inference methods were bet-
ter at recovering activating edges or inhibitory edges. The mCAD
model was again an outlier for EPR for activating and inhibitory
edges, with only SCODE having slightly better-than-random
scores for both. Overall, the GRN inference algorithms per-
formed poorly when it comes to recovering the true edges within
the top-k predictions.

We examined which algorithms produced similar reconstruc-
tions. For every model, the three best-performing methods (PIDC,
GENIE3 and GRNBoost2) had similar outputs (Supplementary
Note 2.4). In addition, LEAP and PPCOR were similar to the first
three methods for the mCAD and GSD models. Pairwise similari-
ties were poor for the other algorithms.

The GRNs formed by the top-k edges contained a higher than
expected number of feedforward loops and lower than expected
feedback loops and mutual interactions (Supplementary Note 2.5).
Further, a very large fraction of false positives in the top-k edges
corresponded to paths of length two in the ground-truth networks
(Supplementary Note 2.6). This tendency to predict ‘indirect’ inter-
actions could be the reason for the low EPR values.

Experimental single-cell RNA-seq datasets. We selected five
experimental single-cell RNA-seq datasets, two in human and
three in mouse cells, comprising seven cell types (Methods and
Supplementary Table 3). We collected three different types of
ground-truth network: cell-type-specific ChIP–seq, nonspecific

SINCERITIES

SCRIBE

SINGE

PPCOR

PIDC

GENIE3

LEAP

GRISLI

GRNVBEM

SCNS

SCODE

Low/Poor High/Good Low/Poor

0.8 0.8

0.8

0.8

0.9

0.9

1.01.9

4.1

4.8

1.3 1.2

1.2 1.2

1.2

1.2 0.3

1.0 0.4

0.4 0.1 0.2 0.3

0.20.2 0.3

0.3

1.0

LI CY LL BF

AUPRC ratio Stability across datasets

BFC TF LI CY LL BF BFC TF

10.4 2.2 3.5

High/Good

GRNBOOST2

Fig. 2 | summary of results for datasets from synthetic networks. The first
six columns display the median AUPrC ratios for the 20 datasets with
2,000 and 5,000 cells, with algorithms (rows) ordered in decreasing
order of the median of the per-network median AUPrC ratios. The next
set of six columns displays the median stability scores across multiple
datasets (Methods). For each network, the color in each cell is proportional
to the corresponding value (scaled between 0 and 1). We display the
highest and lowest values for each network inside the corresponding cells.
Abbreviations: LI, linear; Cy, cycle; LL, linear long; BF, bifurcating; BFC,
bifurcating converging and TF, trifurcating.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods 149

http://www.nature.com/naturemethods

AnAlysis NATuRE METhods

ChIP–seq and functional interaction networks (Methods and
Supplementary Table 4).

To measure the running time of the algorithms, we selected three
cell types, namely, human mature hepatocytes (hHEP), human
embryonic stem cells (hESCs) and erythroid-lineage mouse hema-
topoietic stem cells (mHSC-E), which contained different numbers
of cells. We executed the algorithms on multiple subsets of highly
varying genes in each dataset. For 5,000 genes, the running times
ranged from minutes (PPCOR, LEAP, SINCERITIES and SCODE)

to hours (GRNBOOST2) to nearly a day (GENIE3 and PIDC).
GRNVBEM, SCRIBE and SINGE were the slowest methods tak-
ing a few hours to nearly a day for 1,000 genes (Supplementary
Fig. 7). There was little to no variation in the running times of any
method with increasing number of cells. Since the implementations
of GENIE3, GRNBoost2 and SINGE are multithreaded, their wall-
clock times can be lowered by a factor proportional to the number
of threads available. Most of the algorithms did not require more
than 4 GB of RAM for up to 2,000 genes.

Pax6

Coup Fgf8

Emx2

Irx3

Dbx1

Dbx2Pax6

Nkx6.1

Nkx6.2

Nkx2.2

EgrNabFli-1

FOG-1

cJun GATA-2

C/EBPaSCL

EKLF

GATA-1

WT1mKTS

WT1pKTS

CBX2
UGR

NR0B1

AMH

GATA4

NR5A1

CTNNB1

SRY

WNT4
SOX9

DHH

PGD2

DMRT1

DKK1

FGF9

RSPO1

FOXL2

G
S

D
H

S
C

V
S

C
m

C
A

D

Networks
a b c dSimulation time

15

10

5

0

0–20 20

t-
S

N
E

 2
t -SNE 1

–5

–10

15

10

5

0

0–20 20

t-
S

N
E

 2

t -SNE 1

0–20 20

t -SNE 1

–5

–10

10

0t-
S

N
E

 2

–10

0–20 –10 10

t -SNE 1

10

0

t-
S

N
E

 2

–10

0–20 –10 10

t -SNE 1

10

0

t-
S

N
E

 2

–10

0–20 –10 10

t -SNE 1

10

0

t-
S

N
E

 2

–10

10–10 0 20

t -SNE 1

10

20

0

t-
S

N
E

 2

–10

10–10 0

t -SNE 1

0

10

20

–10

t-
S

N
E

 2

–20
10–10 0

t -SNE 1

0

10

20

–10

t-
S

N
E

 2

–20
10–10 0

t -SNE 1

0

10

20

–10

t-
S

N
E

 2

–20

10–10 0 20

t -SNE 1

10

20

0

t-
S

N
E

 2

–10

10–10 0 20

t -SNE 1

10

20

0

t-
S

N
E

 2

–10

Clusters Slingshot

PU.1

Gfi-1

Olig2

Sp8

Fig. 3 | Visualization of t-sNe projections of simulations reveals trajectories leading to steady states that correspond to those of the curated models.
each row in the figure corresponds to a model, indicated on the left: mCAD, VSC, HSC differentiation and GSD determination. a, Network diagrams of the
models. b, t-SNe visualizations of 2,000 cells sampled from the BoolODe output. The color of each point indicates the corresponding simulation time.
c, each color corresponds to a different subset of cells obtained by using k-means clustering of simulations, with k set to the number of steady states
reported in the relevant publication (two for mCAD, five for VSC, four for HSC and two for GSD). d, Pseudotimes and principal curves (black) computed
by Slingshot showing correspondence with simulation times in b and clusters in c, respectively. Colors of simulation time and pseudotime: blue for early,
green for intermediate and yellow for later.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods150

http://www.nature.com/naturemethods

AnAlysisNATuRE METhods

For further analysis, we selected the five algorithms with the
highest median AUPRC in each of the earlier two datasets:
SINCERITIES, SCRIBE, SINGE, PPCOR and PIDC for synthetic
networks and PIDC, GENIE3, GRNBoost2, PPCOR and SCODE
for Boolean models; PIDC and PPCOR were in both sets. We
did not retain SINGE and SCRIBE because of the time taken for
parameter search.

For each RNA-seq dataset, we created four subsets of genes con-
taining all the significantly varying TFs and either (1) the 500 or (2)
1,000 most-varying genes and only the (3) 500 or (4) 1,000 most-
varying genes. We intersected each ground-truth network with each
set of genes.

We compared the algorithms based on the EPR, reasoning that
predicted interactions of higher confidence will be more interesting
to experimentalists. We used the top-k networks, setting k equal to
the number of edges in the corresponding reduced ground-truth
dataset. We performed parameter search to optimize the EPR
(Supplementary Note 3.1).

In general, the algorithms achieved lower EPR values in net-
works with higher densities; that is, the cell-type-specific ChIP–seq
networks (Fig. 5 and Supplementary Fig. 8). While the STRING
and nonspecific ChIP–seq networks had similar densities, the GRN
methods typically achieved a higher EPR for the former. STRING
networks contain both physical and functional (indirect) interac-
tions. The higher EPR ratios obtained for STRING networks com-
pared to ChIP–seq networks of similar density suggested that a
substantial fraction of the edges in the inferred GRNs were indi-
rect, reinforcing our findings for Boolean models. The densities
of the cell-type-specific ChIP–seq networks varied considerably

(from 0.08 to 0.58). The EPR of most of the methods on these net-
works was close to 1, that is, similar to a random predictor, with no
EPR value exceeding 1.5.

GENIE3, PIDC and GRNBoost2 were the three methods with
the highest EPR values for experimental datasets (Fig. 5 and
Supplementary Fig. 8), just as they were for curated models (Fig. 4).
These methods also performed equally well for AUPRC ratios
(Supplementary Figs. 9 and 10). When we computed modules
in the GRNs output by these methods, we found that they had a
good concordance with clusters determined directly from the gene
expression data (Supplementary Note 3.2). PPCOR, which was
consistently in the top-four methods for both synthetic networks
and curated models, had only a slightly better-than-random EPR
across all experimental datasets. PPCOR’s AUPRC decreased mod-
erately as we increased dropouts in datasets from curated models
(Supplementary Fig. 4). We speculate that dropouts in experimental
single-cell RNA-seq datasets had a severe effect on PPCOR.

To examine the effect of the number of genes, as well as including
all significantly varying TFs, we evaluated the three top perform-
ing methods, PIDC, GENIE3 and GRNBoost2, on the nonspecific
ChIP–seq and STRING networks. We found that the median EPR
had a statistically significant improvement when we included all
significantly varying TFs in the analysis (Supplementary Note 3.3).
However, the addition of highly varying genes (500 versus 1,000) did
not lead to a significant improvement in EPR values. The AUPRC
ratio did not vary with the number of genes.

Almost every algorithm produced nearly identical outputs
when we ran it on the same dataset multiple times (Supplementary
Note 3.4). However, for the same dataset, the results varied

PIDC 2.0

mCAD VSC

AUPRC ratio Early precision ratio

High/Good Random predictorLow/Poor High/GoodLow/Poor

EPR activation EPR inhibition

HSC GSD mCAD VSC HSC GSD mCAD VSC HSC GSD mCAD VSC HSC GSD

2.1 1.5 2.9

GENIE3 2.8 2.0 1.5 2.1 2.6

2.6

GRNBOOST2 2.7 1.5 2.7

PPCOR 1.4 2.1 1.8

SCODE 1.3 1.3 1.5 1.4

1.4

1.4

1.2 3.2

GRISLI 1.3 1.4 1.1 1.1

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

1.4 1.1

SINGE

SCNS

LEAP

SINCERITIES 1.1 1.1 1.1 1.2

1.3 1.3

1.3

1.0

1.0 1.2

1.2

GRNVBEM

SCRIBE

Fig. 4 | summary of results for ten datasets without dropouts from curated models. rows correspond to algorithms ordered by decreasing median of the per-
model median AUPrC ratios. The four sets of four columns each display the median AUPrC ratios, median ePr, median ePr for activating edges and median
ePr for inhibitory edges. For each model, the color in each cell is proportional to the corresponding value (scaled between 0 and 1, ignoring values that are less
than that of a random predictor, shown as black squares). We display the highest and lowest values for each model inside the corresponding cells.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods 151

http://www.nature.com/naturemethods

AnAlysis NATuRE METhods

substantially from one algorithm to another (Supplementary
Note 3.5), in contrast to curated models where the top performing
methods yielded similar results (Supplementary Note 2.4). Moreover,
ensembles of the algorithm outputs did not perform systemati-
cally better than the best method for each dataset (Supplementary
Note 3.5). This result stands in contrast to the success of ensembles
in inferring GRNs from bulk transcriptional data30.

discussion
We have presented BEELINE, a framework for benchmarking
algorithms that infer GRNs from single-cell gene expression data.
Figure 6 summarizes the properties of the algorithms and the insights

from this study. Despite considerable variation in algorithm perfor-
mance across the different types of data, we noted a few trends. The
synthetic networks were easier to recover than the curated models.
The reason may be that the synthetic networks have simple and well-
defined trajectories. For curated models, each of which has multiple
trajectories, we found that methods that do not require pseudotime
information (GENIE3, GRNBoost2 and PIDC) performed the best.
Methods that performed well for Boolean models also inferred
GRNs of good accuracy for experimental datasets. Nevertheless, the
overall performance of these approaches was less than ideal.

A surprising trend was that the best-performing algorithms
for datasets from synthetic networks (SINCERITIES, SCRIBE and

hHep

hESC

hHep

hESC

hHep

hESC

mESC

mDC

mESC

mHSC-GM

mHSC-L

mHSC-E

mDC

mESC

mHSC-GM

mHSC-L

mHSC-E

mDC

mESC

mHSC-GM

mHSC-L

mHSC-E

30

34

322

283

409

343

34

20

88

22

16

29

250

516

82

35

144

264

495

92

39

156

874

815

832

760

656

517

775

448

977

618

525

691

643

896

301

168

447

487

648

206

74

300

0.38

0.16

0.02

0.02

0.03

0.02

0.16

0.08

0.34

0.54

0.52

0.58

0.02

0.01

0.03

0.05

0.02

0.04

0.02

0.04

0.05

0.03

1.0

2.5

1.9

3.5

3.8

1.0

2.7

2.9

5.4

7.5

1.4

1.0

1.1

1.1

1.1

2.7

3.3

6.8

2.0

8.7

6.8

1.1

1.0

1.0

1.0

3.3

1.2

1.0

1.0

1.1

2.1

1.1

1.0

1.1

1.0

1.1

1.1

1.2

1.6

1.9

1.6

1.3

1.3

1.1

1.6

1.7

1.3

1.0

1.6

31

34

332

292

414

351

34

21

89

23

16

33

254

522

88

37

147

273

499

100

40

161

1331

1260

1224

1149

889

709

1099

690

1385

1089

640

1177

980

1221

532

198

680

681

799

357

86

427

0.38

0.17

0.01

0.01

0.02

0.02

0.15

0.08

0.35

0.56

0.51

0.57

0.02

0.01

0.03

0.04

0.02

0.03

0.02

0.04

0.05

0.03

1.0

3.6

4.1

1.3

3.0

5.7

3.7

8.1

1.1

1.3

1.1

1.0

1.1

1.0

3.0

3.5

5.9

3.0

2.2

8.5

7.2

2.8

1.3

1.1

1.0

1.0

1.0

3.5

3.0

3.7

7.2

2.5

1.1

1.0

1.1

1.0

1.4

3.1

1.2

4.2

1.1

1.3

1.4

1.0

1.0

1.0

1.0

1.2

1.2

1.1

1.0

1.1

1.2

1.7

2.2

1.3

1.4

Network statistics EPR Network statistics EPR

TFs + 500 genes

PID
C

PID GENI

GE GRNB

GR SIN
C

SINPCOR

PC No.
 T

Fs

No No.
 G

en
es

No Den
sit

y

DeSCODE

SC PID
C

PID GENI

GE GRNB

GR SIN
C

SPCOR

PCSCODE

SCNo.
 T

Fs

No No.
 G

en
es

No Den
sit

y

De

Low/Poor High/GoodRandom predictor

STRING

Nonspecific
ChIP–seq

Cell-type-
specific

ChIP–seq

lof/gof

STRING

Nonspecific
ChIP–seq

Cell-type-
specific

ChIP–seq

TFs + 1,000 genes

Fig. 5 | summary of ePR results for experimental single-cell RNA-seq datasets. The left half of the figure (TFs + 500 genes) shows results for datasets
composed of all significantly varying TFs and the 500 most-varying genes. each row corresponds to one scrNA-seq dataset. The first three columns report
network statistics. The next six columns report ePr values. The right half (TFs + 1,000 genes) shows results for all significantly varying TFs and the 1,000
most-varying genes. In both sections, algorithms are sorted by median ePr across the datasets (rows) for the TFs + 500 gene set. For each dataset, the
color in each cell is proportional to the corresponding value scaled between 0 and 1 (ignoring values that are less than that of a random predictor, which
are shown as black squares). We display the highest and lowest values for each dataset inside the corresponding cells. Abbreviations: GeNI, GeNIe3;
GrNB, GrNBoost2; lof/gof, loss-of-function/gain-of-function; PCOr, PPCOr and SINC, SINCerITIeS.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods152

http://www.nature.com/naturemethods

AnAlysisNATuRE METhods

SINGE, Fig. 2) had poor results on datasets from curated models
(Fig. 4); SINCERITIES had close to or worse-than-random EPRs
on experimental datasets as well (Fig. 5). When we inferred GRNs
for synthetic networks using shuffled pseudotimes (Methods), we
observed a general decrease in performance with an increase in the
size of the window over which we shuffled the pseudotime values,
with the effect being most pronounced for SINCERITIES, SCRIBE
and SINGE (‘Pseudotime’ in Fig. 6 and Supplementary Fig. 11). This
analysis suggests that these algorithms may be sensitive to accurate
pseudotime imputation.

Based on these observations, we make specific recommenda-
tions for users seeking to apply these methods.

 i. PIDC, GENIE3 and GRNBoost2 are the methods of choice,
since they were leading and consistent performers for curated
models and experimental datasets in terms of accuracy.

 ii. GENIE3 and PIDC also had better stability across multiple
runs, whereas GRNBoost2 was less sensitive to the presence
of dropouts. Since these methods do not require pseudotime-
ordered cells, they are immune to any errors in pseudotime
computation. As the quality of pseudotime inference improves,
SINCERITIES may become a good choice, especially since it is
stable across multiple runs and in the presence of dropouts.

 iii. Since GRNBoost2 and GENIE3 have multithreaded implemen-
tations8, they are as efficient as PIDC for 2,000 genes or fewer.

 iv. Our results suggest that adding more highly varying genes
(1,000 rather than 500) and/or considering all significantly

varying TFs contribute to significant improvements in the EPR
of the best-performing algorithms. However, there is no effect
on AUPRC. A recent best-practice guide31 has suggested using
1,000–5,000 highly variable genes for single-cell RNA-seq anal-
yses such as clustering and differential expression. However,
GRN algorithms may require significant computation time
beyond 1,000 genes. Hence, the strategy for selection of genes
merits further analysis.

Inference of GRNs has been an active area of research for more
than 20 years. Our evaluation shows that GRN inference remains a
challenging problem. One possible reason is that single-cell RNA-
seq techniques may not still provide sufficient resolution and varia-
tion in expression for the reliable inference of GRNs despite rapid
advances both in the number of cells that can be measured and
the depth of coverage32. There may also be inherent shortcomings
to the assumption that statistical relationships between expres-
sion patterns correspond to regulatory interactions. In this con-
text, we observed that false positive edges form feedforward loops
when added to ground-truth networks (Supplementary Note 2.5).
To avoid such indirect interactions, it may be important to inte-
grate additional types of data such as known TF binding sites or
ChIP–seq measurements15. Finally, a target gene’s expression level
may change even if the regulating TF does not vary in abundance.
Recent approaches that interrogate single cells along multiple
modalities33,34 may be important for the next generation of GRN
inference algorithms.

PIDC

GENIE3

GRNBOOST2

SCODE

PPCOR

SINCERITIES

SCRIBE

SINGE

LEAP

GRISLI

GRNVBEM

SCNS

MI

RF

RF

ODE + Reg

Corr

Reg

MI

GC

Corr

ODE + Reg

Reg

Bool

Low/Poor High/Good Low/Poor High/Good

–

–

–

–

– – ––

–

–

–

ODE
parameters

–

–

–

–

–

–

Type of RDI –

Regression
parameters

Lag

Regression
parameters

–

Boolean
model
parameters

1 s

5 m

1 m

1 m

1 s

1 s

5 m

3 h

1 s

5 m

1 m

–

0.1 G

1 G

0.1 G

1 M

1 M

0.1 G

0.1 G

0.5 G

1 M

0.5 G

0.1 G

–

0.1 G

2 G

0.1 G

0.1 G

0.1 G

0.1 G

0.1 G

0.5 G

0.1 G

>4 G

2 G

–

0.5 G

2 G

0.5 G

0.1 G

0.1 G

0.1 G

0.1 G

1 G

0.1 G

>4 G

–

–

1 G

2 G

1 G

0.5 G

0.1 G

0.5 G

–

–

0.5 G

–

–

1 m

1 h

10 m

5 m

1 s

1 m

2 h

>1 d

1 s

1 h

>1 d

–

5 m

3 h

30 m

5 m

1 s

5 m

6 h

>1 d

1 m

3 h

–

–

30 m

100 100 500 1,000 2,000500

Time Memory

Scalability (genes)StabilityAccuracyProperties

Cat
eg

or
y

Add
l. i

np
ut

s

Tim
e

or
de

re
d?

Dire
cte

d?

Sign
ed

?

Syn
th

et
ic

Cur
at

ed

sc
RNA-s

eq

Dat
as

et
s

Run
s

Dro
po

ut
s

Pse
ud

ot
im

e

1,000 2,000

12 h

1 h

30 m

1 s

10 m

–

–

5 m

–

–

Fig. 6 | summary of properties of GRN inference algorithms and results obtained from BeeLINe. each row corresponds to one of the algorithms included
in our evaluation. The first six columns display algorithm methodology, required additional inputs, whether the method needs cells to be time-ordered,
and whether the inferred edges are directed and signed. The next three columns summarize the results in Figs. 2, 4 and 5. The next four columns present
results for different types of stability. The final set of columns contain the running time and memory usage. For the ‘Pseudotime’ column, we only
considered the seven methods that required these values, ignoring SCNS due to its long execution time. See Methods for details on how we generated this
figure. Abbreviations: MI, mutual information; rF, random forest; Corr, Correlation; reg, regression; GC, Granger causality and Bool, Boolean model.

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods 153

http://www.nature.com/naturemethods

AnAlysis NATuRE METhods

BoolODE was a critical component of our analysis. We devel-
oped BoolODE after noting that reported AUROC or precision
at early recall values for GRN algorithms were often close to that
of a random predictor6,10,11,13,15, as we also observed. Therefore, we
reasoned that it would be valuable to the community to bench-
mark GRN algorithms by applying them to accurate simulations of
Boolean models with predictable trajectories. BoolODE is success-
ful at this task and promises to be useful as an independent tool.

As single-cell experiments become more complex, cellular tra-
jectories will also be more intricate, perhaps involving multiple
stages of bifurcation and/or cycling. A key challenge that lies ahead
is accurately computing the underlying GRNs. We hope that sci-
entists will use BEELINE in conjunction with BoolODE as they
develop new approaches for GRN inference.

online content
Any methods, additional references, Nature Research reporting
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author
contributions and competing interests; and statements of data and
code availability are available at https://doi.org/10.1038/s41592-
019-0690-6.

Received: 4 June 2019; Accepted: 22 November 2019;
Published online: 6 January 2020

References
 1. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood

dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).
 2. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A.

The human cell atlas: from vision to reality. Nature 550, 451–453 (2017).
 3. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity

with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).
 4. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to

single-cell differential expression analysis. Nat. Methods 11, 740–742 (2014).
 5. Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in

single-cell RNA-sequencing data reveals hidden subpopulations of cells.
Nat. Biotechnol. 33, 155–160 (2015).

 6. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring
regulatory networks from expression data using tree-based methods.
PLoS One 5, e12776 (2010).

 7. Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation
coefficients. Commun. Stat. Appl. Methods 22, 665–674 (2015).

 8. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference
of gene regulatory networks. Bioinformatics 35, 2159–2161 (2018).

 9. Aubin-Frankowski, P.-C. & Vert, J.-P. Gene regulation inference from
single-cell RNA-seq data with linear differential equations and velocity
inference. Preprint at bioRxiv https://doi.org/10.1101/464479 (2018).

 10. Deshpande, A., Chu, L.-F., Stewart, R. & Gitter, A. Network inference with
Granger causality ensembles on single-cell transcriptomic data. Preprint at
bioRxiv https://doi.org/10.1101/534834 (2019).

 11. Huynh-Thu, V. A. & Sanguinetti, G. Combining tree-based and dynamical
systems for the inference of gene regulatory networks. Bioinformatics 31,
1614–1622 (2015).

 12. Specht, A. T. & Li, J. LEAP: constructing gene co-expression networks for
single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 33,
764–766 (2017).

 13. Matsumoto, H. et al. SCODE: an efficient regulatory network inference
algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33,
2314–2321 (2017).

 14. Chan, T. E., Stumpf, M. P. H. & Babtie, A. C. Gene regulatory network
inference from single-cell data using multivariate information measures.
Cell Syst. 5, 251–267 (2017).

 15. Aibar, S. et al. SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14, 1083–1086 (2017).

 16. Papili Gao, N., Ud-Dean, S. M. M., Gandrillon, O. & Gunawan, R.
SINCERITIES: inferring gene regulatory networks from time-stamped single
cell transcriptional expression profiles. Bioinformatics 34, 258–266 (2018).

 17. Sanchez-Castillo, M., Blanco, D., Tienda-Luna, I. M., Carrion, M. C. &
Huang, Y. A Bayesian framework for the inference of gene regulatory
networks from time and pseudo-time series data. Bioinformatics 34,
964–970 (2018).

 18. Woodhouse, S., Piterman, N., Wintersteiger, C. M., Göttgens, B. & Fisher, J.
SCNS: a graphical tool for reconstructing executable regulatory networks
from single-cell genomic data. BMC Syst. Biol. 12, 59 (2018).

 19. Qiu, X. et al. Towards inferring causal gene regulatory networks from single
cell expression measurements. Preprint at bioRxiv https://doi.
org/10.1101/426981 (2018).

 20. Saelens, W., Cannoodt, R., Todorov, H. & Saeys, Y. A comparison of
single-cell trajectory inference methods. Nat. Biotechnol. 37, 547–554 (2019).

 21. Lim, C. Y. et al. BTR: training asynchronous Boolean models using single-cell
expression data. BMC Bioinforma. 17, 355 (2016).

 22. Chen, S. & Mar, J. C. Evaluating methods of inferring gene regulatory networks
highlights their lack of performance for single cell gene expression data.
BMC Bioinformatics 19, 232 (2018).

 23. Schaffter, T., Marbach, D. & Floreano, D. GeneNetWeaver: in silico benchmark
generation and performance profiling of network inference methods.
Bioinformatics 27, 2263–2270 (2011).

 24. Ocone, A., Haghverdi, L., Mueller, N. S. & Theis, F. J. Reconstructing gene
regulatory dynamics from high-dimensional single-cell snapshot data.
Bioinformatics 31, 89–96 (2015).

 25. Giacomantonio, C. E. & Goodhill, G. J. A Boolean model of the gene
regulatory network underlying mammalian cortical area development.
PLoS Comput. Biol. 6, e1000936 (2010).

 26. Lovrics, A. et al. Boolean modelling reveals new regulatory connections
between transcription factors orchestrating the development of the ventral
spinal cord. PLoS One 9, e111430 (2014).

 27. Krumsiek, J., Marr, C., Schroeder, T. & Theis, F. J. Hierarchical differentiation
of myeloid progenitors is encoded in the transcription tactor network.
PLoS One 6, e22649 (2011).

 28. Ríos, O. et al. A Boolean network model of human gonadal sex determination.
Theor. Biol. Med. Model. 12, 26 (2015).

 29. Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell
transcriptomics. BMC Genomics 19, 477 (2018).

 30. Marbach, D. et al. Wisdom of crowds for robust gene network inference.
Nat. Methods 9, 796–804 (2012).

 31. Luecken, M. D. & Theis, F. J. Current best practices in single‐cell RNA‐seq
analysis: a tutorial. Mol. Syst. Biol. 15, 8746 (2019).

 32. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of
single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604 (2018).

 33. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177,
1888–1902.e21 (2019).

 34. Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes,
clonotypes and CRISPR perturbations in single cells. Nat. Methods 16,
409–412 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020

NATuRe MeThods | VOL 17 | FeBrUAry 2020 | 147–154 | www.nature.com/naturemethods154

https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1101/464479
https://doi.org/10.1101/534834
https://doi.org/10.1101/426981
https://doi.org/10.1101/426981
http://www.nature.com/naturemethods

AnAlysisNATuRE METhods

Methods
Regulatory network inference algorithms. We briefly describe each algorithm we
have included in this evaluation. We have ordered the methods chronologically by
year and month of publication. Every software package had an open source license,
other than GRNVBEM and GRISLI, which did not have any license.

 1. GENIE3 (ref. 6). Developed originally for bulk transcriptional data, GENIE3
computes the regulatory network for each gene independently. It uses tree-
based ensemble methods such as random forests to predict the expression
profile of each target gene from profiles of all the other genes. The weight
of an interaction comes from the importance of an input gene in the
predictor for a target gene’s expression pattern. Aggregating these
weighted interactions over all the genes yields the regulatory network.
This method was the top performer in the DREAM4 in silico network
challenge (multifactorial subchallenge).

 2. PPCOR7. This R package computes the partial and semi-partial correlation
coefficients for every pair of variables (genes, in our case) with respect to all
the other variables. It also computes a P value for each correlation. We use
this package to compute the partial correlation coefficients. Since these values
are symmetric, this method yields an undirected regulatory network. We use
the sign of the correlation, which is bounded between −1 and 1, to signify
whether an interaction is inhibitory (negative) or activating (positive).

 3. LEAP12. Starting with pseudotime-ordered data, LEAP calculates the Pear-
son’s correlation of normalized mapped-read counts over temporal windows
of a fixed size with different lags. The score recorded for a pair of genes is
the maximum Pearson’s correlation over all the values of lag that the method
considers. The software includes a permutation test to estimate false discovery
rates. Since the correlation computed is not symmetric, this method can
output directed networks.

 4. SCODE13. This method uses linear ODEs to represent how a regulatory
network results in observed gene expression dynamics. SCODE relies on a
specific relational expression that can be estimated efficiently using linear
regression. In combination with dimension reduction, this approach leads to
a considerable reduction in the time complexity of the algorithm.

 5. PIDC14. This method uses concepts from information theory. For every pair
of genes x and y, given a third gene z, the method partitions the pairwise mu-
tual information between x and y into a redundant and a unique component.
It computes the ratio between the unique component and the mutual infor-
mation. The sum of this ratio over all other genes z is the proportional unique
contribution between x and y. The method then uses per-gene thresholds to
identify the most important interactions for each gene. The resulting network
is undirected since the proportional unique contribution is symmetric.

 6. SINCERITIES16. Given time-stamped transcriptional data, this method
computes temporal changes in each gene’s expression through the distance
of the marginal distributions between two consecutive time points using the
Kolmogorov–Smirnov statistic. To infer regulatory connections between
TFs and target genes, the approach uses Granger causality; that is, it uses the
changes in the gene expression of TFs in one time window to predict how
the expression distributions of target genes shift in the next time window.
The authors formulate inference as a ridge regression problem. They infer the
signs of the edges using partial correlation analyses.

 7. SCNS18. This method takes single-cell gene expression data taken over a time
course as input and computes logical rules (Boolean formulas) that drive the
progression and transformation from initial cell states to later cell states. By
design, the resulting logical model facilitates the prediction of the effect of gene
perturbations (for example, knockout or overexpression) on specific lineages.

 8. GRNVBEM17. This approach infers a Bayesian network representing the gene
regulatory interactions. It uses a first-order autoregressive model to estimate
the fold change of a gene at a specific time as a linear combination of the
expression of the gene’s regulators in the Bayesian network at the previous
time point. It infers the GRN within a variational Bayesian framework.
This method can associate signs with its directed edges.

 9. SCRIBE19. Similar to PIDC, this approach uses ideas from information
theory. The relevant concept here is conditioned restricted directed informa-
tion, which measures the mutual information between the past state (expres-
sion values) of a regulator and the current state of a target gene conditioned
on the state of the target at the previous time point. To obtain efficiency for
large datasets, the authors use an unconditioned version called RDI, followed
by the context likelihood of relatedness algorithm35 to remove edges that cor-
respond to indirect effects. We used this strategy for experimental single-cell
RNA-seq datasets.

 10. GRNBoost2 (ref. 8). GRNBoost2 is a fast alternative for GENIE3, especially
suited for datasets with tens of thousands of observations. Like GENIE3,
GRNBoost2 trains a regression model to select the most important regulators
for each gene in the dataset. GRNBoost2 achieves its efficiency by using sto-
chastic gradient boosting machine regression with early stopping regulariza-
tion to infer the network.

 11. GRISLI9. Like SCODE, this approach uses a linear ODE-based formalism.
GRISLI estimates the parameters of the model using different ideas. Taking

either the experimental time of the cells or estimated pseudotime as input,
it first estimates the velocity of each cell, that is, how each gene’s expression
value changes as each cell undergoes a dynamical process36. It then computes
the structure of the underlying GRN by solving a sparse regression problem
that relates the gene expression and velocity profiles of each cell.

 12. SINGE10. The authors observe that while many gene inference algorithms
start by computing a pseudotime value for each cell, the distribution of cells
along the underlying dynamical process may not be uniform. To address this
limitation, SINGE uses kernel-based Granger causality regression to alleviate
irregularities in pseudotime values. SINGE performs multiple regressions,
one for each set of input parameters, and aggregates the resulting predictions
using a modified Borda method.

In summary, most algorithms developed explicitly for single-cell
transcriptomic data required the cells to be ordered by pseudotime in the
input, with PIDC14 being an exception. These methods ideally require datasets
corresponding to linear trajectories; some techniques recommend that data with
branched trajectories be split into multiple linear ones before input10,19. In contrast,
methods that had originally been developed for bulk transcriptional data did not
impose this requirement6,7. Almost all the methods we included output directed
networks with exceptions being PPCOR and PIDC7,14. Only five methods output
signed networks, that is, they indicated whether each interaction was activating
or inhibitory7,13,16–18. A number of methods inferred each pairwise interaction
independently of the others, sometimes conditioned on the other genes7,12,14,19.
Several other methods computed all the regulators of a gene simultaneously but
solved the problem independently for each gene6,8–10,13,16,18.

Other methods. We next discuss other papers on this topic and our rationale for
not including them in the comparison. We did not consider a method if it was
supervised37 or used additional information; for example, a database of TFs and
their targets15 or a lineage tree38. We did not include methods that output a single
GRN without any edge weights21,24, since any such approach would yield just a
single point on a precision-recall curve. Other than SCNS, we did not consider
methods that output Boolean networks21,38,39.

BoolODE: converting Boolean models to ODEs. GeneNetWeaver23,40,41 is a widely
used method to simulate bulk transcriptomic data from GRNs. GeneNetWeaver
has also been applied in single-cell analysis14,16,17,21,22 but has limitations, as we have
demonstrated (Supplementary Fig. 1). To deal with this challenge, we develop a
method called BoolODE that systematically and accurately converts a Boolean
model into a system of stochastic differential equations (SDEs).

We start this section by giving an overview of GeneNetWeaver. Next, we
describe our BoolODE framework that we have developed and highlight its
differences with GeneNetWeaver. We end this section by summarizing BoolODE
and the reasons we prefer it over GeneNetWeaver.

GeneNetWeaver. This method starts with a network of regulatory interactions
among TFs and their targets. It computes a connected, dense subnetwork around a
randomly selected seed node and converts this network into a system of differential
equations. To express this network in the form of ODEs, it assigns each node
i in the network a ‘gene’ variable (xi) representing the level of messenger RNA
expression and a ‘protein’ variable (pi) representing the amount of TF produced
by protein translation as follows:

d xi½
dt

¼ m f Rið Þ � lx xi½

d pi½
dt

¼ r xi½ � lp pi½

where m is the mRNA transcription rate, lx is the mRNA degradation rate, r is the
protein translation rate and lp is the protein degradation rate. In the first equation,
Ri denotes the set of regulators of node i. The nonlinear input function f(Ri)
captures all the regulatory interactions controlling the expression of node i (ref. 41);
we specify it below.

If there are N regulators for a given gene, there are 2N possible configurations
of how the regulators can bind to the gene’s promoter. Considering cooperative
effects of regulator binding, the probability (Pr) of each configuration S 2 2Ri

I
, the

powerset of Ri, is given by the following equation42:

Pr Sð Þ ¼
Q

q2S q½ =kð Þn

1þP
T

Q
q2T q½ =kð Þn

where k and n are the Hill threshold and Hill coefficient, respectively. Here,
we use q to denote a single regulator in the configuration S and the product in
the numerator ranges over all regulators that are present (bound) in S. In the
summation in the denominator of this equation, the set T ranges over all members
of the powerset 2Ri

I
 other than the empty set. GeneNetWeaver further introduces

a randomly sampled parameter αS∈ [0,1] to specify the efficiency of transcription

NATuRe MeThods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

AnAlysis NATuRE METhods

activation by a specific configuration S of bound regulators. Thus, the function f(Ri)
thus takes the following form:

f Rið Þ ¼
X

S22Ri
αS Pr Sð Þ

Next, GeneNetWeaver adds a noise term to each equation to mimic stochastic
effects in gene expression23. In addition, to create variations among individual
experimental samples, GeneNetWeaver recommends adopting a multifactorial
perturbation23 that increases or decreases the basal activation of each gene in the
GRN simultaneously by a small, randomly selected value. GeneNetWeaver removes
this perturbation after the first half of the simulation. Simulating this system of
SDEs generates the requisite gene expression data.

BoolODE uses Boolean models to create simulated datasets. To generate simulated
time course data for our analysis, we used the GeneNetWeaver framework with
one critical difference and one minor variation. The form of the equations used by
BoolODE is identical to that of GeneNetWeaver. The critical difference is that we
do not sample the αS parameters in the above equation randomly; that is, we do not
combine the regulators of each gene using a random logic function. Instead, we use
the fact that in both the artificial networks and the literature-curated models, we
know the Boolean function that specifies how the states of the regulators control the
state of the target genes. Moreover, we can express any arbitrary Boolean function
in the form of a truth table relating the input states (that is, activities of TFs) to the
output state (the activity of target gene). For a gene with N regulators in its Boolean
function, we explore all 2N combinations of TF states and evaluate the transcriptional
activity of each specific regulator configuration. Since the value of the Boolean
function is the logical disjunction (‘or’) of all these values, we set the α value to
one (respectively, zero) for every configuration that evaluates to ‘on’ (respectively,
‘off ’). The following example illustrates our approach. Consider a gene X with two
activators (P and Q) and one inhibitor (R), represented by the following rule:

X ¼ P _ Qð Þ ^ : Rð Þ

The truth table corresponding to this rule along with the α parameters
is shown in Supplementary Table 5. Therefore, the ODE governing the time
dynamics of gene X is

d X½
dt ¼ m

α0 þ αP P½ þ αQ Q½ þ αR R½ þ αPQ P½ Q½ þ
αPR P½ R½ þ αQR Q½ R½ þ αPQR P½ Q½ R½

1þ P½ þ Q½ þ R½ þ P½ Q½ þ P½ R½ þ Q½ R½ þ P½ Q½ R½

0
B@

1
CA

�lx X½ ¼ m P½ þ Q½ þ P½ Q½
1þ P½ þ Q½ þ R½ þ P½ Q½
þ P½ R½ þ Q½ R½ þ P½ Q½ R½

0
BB@

1
CCA� lx X½

since only αP, αQ and αPQ have the value one and every other parameter has
the value zero.

Next, we discuss the minor variation of BoolODE from GeneNetWeaver, which
is in how we sample kinetic parameters. The GeneNetWeaver equations use four
kinetic parameters: one each for mRNA transcription, protein translation and
mRNA and protein degradation rates. Saelens et al.20 sample them uniformly from
parameter specific intervals. Independently for every dataset, we sample each
parameter from a normal distribution using the value shown in Supplementary
Table 6 as the mean and a standard deviation of up to 10% of this mean value.
Within a single dataset and for all simulations for that dataset, we fix each
parameter (for example, mRNA degradation rate) for all genes. We choose the
values in Supplementary Table 6 so as to achieve the following characteristics:
The maximal steady state achievable by the mRNAs is two (the value of m/lx), of
the proteins is ten (the value of r/lp), and the time scale of protein production is
ten times that of the mRNAs (since the characteristic time scale of production is
inversely proportional to the degradation rate).

To create stochastic simulations, we use the formulation proposed by
Saelens et al.20 to modify the ODE expressions as follows:

d xi½
dt

¼ mf Rið Þ � lx xi½ þ s
ffiffiffiffiffiffiffi
xi½

p
ΔWt

d pi½
dt

¼ r xi½ � lp pi½ þ s
ffiffiffiffiffiffiffi
pi½

p
ΔWt

ΔWt ¼ N 0; hð Þ

where s is the noise strength. We use s = 10 in our simulations. We use the
Euler–Maruyama scheme for numerical integration of the SDEs with a time
step of h = 0.01.

Defining a single cell. We define the vector of gene expression values corresponding
to a particular time point in a model simulation as a single cell. For every analysis,

we sample one time point; that is, one cell from a single simulation. Using this
procedure, for a dataset generated from 5,000 simulations, we can obtain up
to 5,000 cells.

Creating GeneNetWeaver simulations for comparison with BoolODE. To simulate a
synthetic network using GeneNetWeaver, we used its edge list as the input network
to GeneNetWeaver. To create the simulations, we used the default options of the
noise parameter (0.05) and multifactorial perturbations. We only performed
wildtype simulations and used the DREAM4 time series output format for
comparison with the BoolODE output.

Summary. We developed the BoolODE approach to convert Boolean functions
specifying a GRN directly to ODE equations. Our proposed BoolODE pipeline
accepts a file describing a Boolean model as input, creates an equivalent ODE
model, adds noise terms and numerically simulates a stochastic time course.
Different model topologies can produce different numbers of steady states. Since
we carry out stochastic simulations, we perform a large number of simulations
in an attempt to ensure that we can reach every steady state. Our analysis of the
trajectories computed by BoolODE on datasets from curated models demonstrates
the success of our approach in this regard (Supplementary Note 2.1). We prefer
BoolODE over a direct application of GeneNetWeaver to create datasets from
synthetic networks and datasets from curated models for three reasons: (1) a
dense regulatory subnetwork computed around a randomly selected node,
as used by GeneNetWeaver, may not correspond to a real biological process;
(2) GeneNetWeaver introduces a random, initial, multifactorial perturbation and
removes it halfway to create variations in the expression profiles of genes across
samples. This stimulation may not correspond to how single-cell gene expression
data is collected and (3) GeneNetWeaver’s SDEs do not appear to capture single-cell
expression trajectories, as we have shown in Supplementary Fig. 1d).

Datasets. A major challenge that arises when we evaluate GRN inference
algorithms for single-cell RNA-seq data is that the ‘ground truth’, that is, the
network of regulatory interactions governing the dynamics of genes of interest, is
usually unknown. Consequently, it is a common practice to create artificial graphs
or extract subnetworks from large-scale transcriptional networks.

To address this challenge, we used three sets of networks that serve as the
ground truth for GRN inference. The first group included six ‘toy’ networks with
specific topologies that give rise to different cellular trajectories with predictable
qualitative properties20. For the second set of networks, we curated four published
Boolean models that explore gene regulatory interactions underlying various
developmental and tissue differentiation processes. Mutual inhibition between a
pair of genes is a key characteristic of each of these models; this type of relationship
is important in creating branching gene expression trajectories. The regulatory
networks underlying the Boolean models serve as the ground truth during
evaluation. We used the third group of networks for experimental scRNA-seq
datasets. We matched each scRNA-seq dataset with an appropriate ChIP–seq-
derived network connecting TFs to their targets; we ensured that the ChIP–seq
data was collected in the same or similar cell type as the scRNA-seq measurements.
In addition, we used noncell-type-specific transcriptional regulatory networks43–45
as well as the functional interactions in the STRING46 database as the ground truth.

Creating datasets from synthetic networks. We now describe how we selected
synthetic networks, converted these networks into systems of SDEs, simulated
these systems, and preprocessed the resulting datasets for input to GRN
inference algorithms.

Selecting networks. To create synthetic datasets exhibiting diverse temporal
trajectories, we use six ‘toy’ networks created in Dynverse, a comparison of
pseudotime inference algorithms20 (Supplementary Fig. 1 and Supplementary
Table 1). When simulated as SDEs, we expect the models produce to trajectories
with the following qualitative properties:

 1. Linear. A gene activation cascade that results in a single temporal trajectory
with distinct final and initial states.

 2. Linear long. Similar to linear but with a larger number of intermediate genes.
 3. Cycle. An oscillatory circuit that produces a linear trajectory where the final

state overlaps with the initial state.
 4. Bifurcating. A network that contains a mutual inhibition motif between two

genes resulting in two distinct branches starting from a common trajectory.
 5. Trifurcating. Mutual inhibition motifs involving three genes in this network

result in three distinct steady states.
 6. Bifurcating converging. An initial bifurcation creates two branches, which

ultimately converge to a single steady state.

We then used the following approach to simulate the above networks.

Converting networks into SDE models and simulating them. We manually convert
each of these networks to a Boolean model: we set a node to be ‘on’ if and only if
at least one activator is ‘on’ and every inhibitor is ‘off ’. We simulate these networks
using BoolODE. We use the initial conditions specified in the Dynverse software20

NATuRe MeThods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

AnAlysisNATuRE METhods

(Supplementary Table 6). To sample cells from the simulations that capture various
locations along a trajectory, we limit the duration of each simulation according
to the characteristics of the model (Supplementary Table 7). For example, we
simulated the linear long network for 15 time units but the linear network, which
has fewer nodes, for five time units.

Comparing simulated datasets with the expected trajectories from synthetic
networks. It is common to visualize simulated time courses from ODE/SDE models
as time course plots or phase plane diagrams with two or three dimensions. The
latter are useful to qualitatively explore the state-space of a model at hand. The
recent popularity of t-distributed stochastic neighbor embedding (t-SNE) as a tool
to visualize and cluster high dimensional scRNA-seq data motivated us to consider
this technique to visualize simulated single-cell data. Supplementary Fig. 1b shows
two-dimensional t-SNE visualizations of each of the toy models.

Preprocessing datasets from synthetic networks for GRN algorithms. Pseudotime
inference methods perform well for linear and bifurcating trajectories20. However,
even the best-performing pseudotime algorithm fails to accurately identify more
complex trajectories such as cycle and bifurcating converging. Therefore, we sought
to develop an approach for preprocessing synthetic datasets that mimicked a real
single-cell gene expression pipeline while isolating the GRN inference algorithms
from the limitations of pseudotime techniques. Accordingly, we used the following
four-step approach to generate single-cell gene expression data from each of the
six synthetic networks:

 1. Using the values in Supplementary Table 6 as the means, and 10% of these
values as the standard deviations, we sampled a parameter set. We then used
BoolODE to perform 5,000 simulations using this parameter set.

 2. We represented each simulation as a |G| × |C| matrix, where G is the set of
genes in the model and C is the set of cells in the simulation. We converted
each of the 5,000 matrices into a one-dimensional vector of length |G| × |C|
and clustered the vectors using k-means clustering with k set to the number
of expected trajectories for each network. For example, the bifurcating net-
work in Supplementary Fig. 1b has two distinct trajectories, so we used k = 2.
We use the cluster information in step 4.

 3. We then randomly sampled one set each of 100, 200, 500, 2,000 and 5,000
cells from the 5,000 simulations.

 4. Finally, we set as input to each algorithm the |G| × |D| matrix, where G is
the set of genes in the model and D is the set of randomly sampled cells. For
those methods that require time information, we specified the simulation
time at which the cell was sampled along with the trajectory (cluster) to
which each cell belonged.

We repeated this procedure on ten different sampled parameter sets to obtain
50 datasets. We ran each algorithm on these 50 datasets.

Note that we used the same set of sampled parameters for all simulations in a
dataset and that we varied parameters only across datasets. As an alternative, we
considered sampling a different set of parameters per simulation since they may
vary from cell to cell. However, this approach caused so much variation that we
could not recapitulate the steady states of the Boolean models in the BoolODE-
created data.

Note that we clustered simulations themselves (with each simulation
represented by the complete time courses of all genes) before we sampled cells.
The reason we adopted this ordering is that the goal of the clustering was to
partition the cells such that each group would (1) correspond to a distinct steady
state of the network and (2) contain cells sampled from the entire time course
of the simulations. Clustering the simulations helped us to compute these types
of cluster. Subsequently sampling one cell from each simulation permitted us to
assign each cell to the cluster to which its simulation belonged and satisfy both
properties we desired.

In contrast, if we had sampled cells and then clustered them, we were
concerned that some cells would have belonged to a cluster corresponding only to
early time points and some only to intermediate, resulting in the possibility that
some steady states would not have any clusters. Alternatively, we would have had
to increase the number of clusters we sought to compute, which may also have
resulted in clusters corresponding only to early or only to intermediate time points.

Creating datasets from curated models. While the synthetic models presented above
are useful for generating simulated data with a variety of specific trajectories,
these networks do not correspond to any real cellular process. To create simulated
datasets that better reflect the characteristics of single-cell transcriptomic datasets,
we turned to published Boolean models of GRNs, as these models are reflective of
the real ‘ground-truth’ control systems in biology.

Since tissue differentiation and development are active areas of investigation by
single-cell methods, we examined the literature from the past ten years to look for
published Boolean models of GRNs involved in these processes. We selected four
published models for analysis. Supplementary Table 2 lists the size of the regulatory
networks and the number of steady states. Below, we discuss the biological
background, the interpretation of model steady states, and the expected type of
trajectories for each of these Boolean models.

mCAD. Giacomantonio et al. explored mCAD as a consequence of the expression
of regulatory TFs along an anterior-posterior gradient25. The model contains five
TFs connected by 14 interactions, captures the expected gene expression patterns
in the anterior and posterior compartments, respectively, and results in two steady
states. Figure 3 displays the regulatory network underlying the model along with a
t-SNE visualization of the trajectories simulated using BoolODE. In Supplementary
Note 2.1, we show that the two clusters observed in the t-SNE visualization
correspond to the two biological states captured by the Boolean model.

VSC development. Lovrics et al. investigated the regulatory basis of VSC
development26. The model consisting of eight TFs involved in ventralization
contains 15 interactions, all of which are inhibitory. It succeeds in accounting for
five distinct neural progenitor cell types. We expect to see five steady states from
this model. Figure 3 shows the regulatory network underlying the model along
with the t-SNE visualization of the trajectories simulated using BoolODE. In
Supplementary Note 2.1, we show that the five steady-state clusters observed in the
t-SNE visualization correspond to the five biological states captured by the model.

HSC differentiation. Krumsiek et al. investigated the GRN underlying myeloid
differentiation27. The proposed model has 11 TFs and captures the differentiation
of multipotent myeloid progenitor (CMP cells) into erythrocytes, megakaryocytes,
monocytes and granulocytes. The Boolean model exhibits four steady states, each
corresponding to one of the four cell types mentioned above. Figure 3 shows the
regulatory network of the HSC model along with the t-SNE visualization of the
trajectories simulated using BoolODE. In Supplementary Note 2.1, we show that
the four steady-state clusters observed in the t-SNE visualization correspond to the
four biological states captured by the Boolean model.

GSD. Rios et al. modeled the gonadal differentiation circuit that regulates the
maturation of the bipotential gonadal primordium into either male (testes) or
female (ovary) gonads28. The model consists of 18 genes and a node representing
the urogenital ridge, which serves as the input to the model. For the wildtype
simulations, the Boolean model predominantly exhibits two steady states
corresponding to the Sertoli cells (male gonad precursors) or the granulosa cells
(female gonad precursors), and one rare state corresponding to a dysfunctional
pathway. Figure 3 shows the regulatory network of the GSD model along with the
t-SNE visualization of the trajectories simulated using BoolODE. In Supplementary
Note 2.1, we show that the two steady-state clusters observed in the t-SNE
visualization correspond to the two predominant biological states capture by
the Boolean model.

Preprocessing datasets from curated models for GRN algorithms. As with the
datasets from synthetic networks, we used the following approach to generate
simulated datasets for each of the four curated models. Using the values in
Supplementary Table 6 as means and 5% of these values as the standard deviations,
we sampled a parameter set. We used BoolODE to perform 2,000 simulations and
randomly sampled one cell from each simulation. We repeated this procedure on
ten different sampled parameter sets to obtain ten datasets. To closely mimic the
preprocessing steps performed for real single-cell gene expression data, we use the
following steps for each dataset:

 1. Pseudotime inference using Slingshot. In the case of datasets from synthetic
networks, we used the simulation time directly for those GRN inference
methods that required cells to be time-ordered. In contrast, for datasets from
curated models, we ordered cells by pseudotime, which we computed using
Slingshot29. We selected Slingshot for pseduotime inference due to its proven
success in correctly identifying cellular trajectories in a recent comprehensive
evaluation of this type of algorithm20. Slingshot needs a lower dimensional
representation of the gene expression data as input. In addition, if the cells
belong to multiple trajectories, Slingshot needs a vector of cluster labels for
the cells, as well as the cluster labels for cells in the start and end states in the
trajectories. To obtain these additional input data for Slingshot, we used the
following procedure:

(a) We use t-SNE on the |G| × |C| matrix representing the data to obtain a two-
dimensional representation of the cells.

(b) We performed k-means clustering on this lower dimensional representa-
tion of the cells with k set to one more than the expected number of trajec-
tories. For example, since we knew that the GSD model had a bifurcating
trajectory, we used k = 3.

(c) We computed the average simulation time of the cells belonging to each of
the k clusters. We set the cluster label corresponding to the smallest average
time as the starting state and the rest of clusters as ending states.

(d) We then ran Slingshot with the t-SNE-projected data and starting and
ending clusters as input. We obtained the trajectories to which each cell
belonged and its pseudotime as output from Slingshot.
Figure 3d displays the results for one dataset of 2,000 cells for each of the
four models. We observed that Slingshot does a very good job of correctly
identifying cells belonging to various trajectories. Further, the pseudo-
time computed for each cell by Slingshot is highly correlated with the

NATuRe MeThods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

AnAlysis NATuRE METhods

simulation time at which we sampled the cell (Supplementary Table 8).
Note that the k-means clustering whose results we display in Fig. 3c is dif-
ferent from the k-means clustering described above. To obtain the results
in Fig. 3c, we followed the procedure described for synthetic models: we
clustered the simulations (complete time courses) themselves, with k set
to the number of steady states. Our goal was to confirm visually that each
cluster contained cells spanning the entire length of the simulation. In
contrast, before applying Slingshot, we clustered the (lower dimensional
representation of the samples) cells; we set k as described above so that we
could input to Slingshot one starting cluster and as many ending clusters as
the number of steady states.

 2. Inducing dropouts in datasets from curated models. We used the same
procedure as Chan et al.14 to induce dropouts, which are commonly seen in
single-cell RNA-seq datasets, especially for transcripts with low abundance47.
We created a dataset with a dropout rate of q as follows: for every gene, we
sorted the cells in increasing order of that gene’s expression value. We set
the expression of that gene in each of the lowest qth percentile of cells in this
order to zero with a q% chance. For example, choosing q = 50 resulted in a
50% chance of setting a gene’s expression values below the 50th percentile
to 0, which affected about 25% of the dataset. Note that we used the same
parameter twice simply for convenience; we do not expect the trends we
find to deviate considerably if we had used two different parameters for
percentile and for probability. We applied two different dropout rates: q = 50
and q = 70. We used Slingshot to recompute pseudotime for each dataset
with dropouts. We did note a considerable decrease in this correlation when
we added dropouts to the simulated datasets, for all but the GSD network
(Supplementary Table 8).

At the end of this step, we had 30 datasets with 2,000 cells for each of the four
models: ten datasets without dropouts, ten with a dropout rate of q = 50 and ten
with a rate of q = 70.

Collecting experimental single-cell RNA-seq datasets and ground-truth networks.
Experimental single-cell RNA-seq datasets. We obtained five different single-cell
RNA-seq datasets, three in mouse and two in human (Supplementary Table 3).
There were a total of seven cell types across these datasets. We preprocessed each
dataset using the procedure described in the corresponding paper. In general, if
the publication did not provide normalized expression values, we log-transformed
the transcripts per kilobase million or fragments per kilobase million counts using
a pseudocount of 1 and used the results as the expression values. We additionally
filtered out any genes that were expressed in fewer than 10% of the cells. We
describe the details of the datasets and the pseudotime computation below:

 1. mHSCs48. We obtained the normalized expression data for 1,656 HSPCs
across 4,773 genes from the supplementary data provided by the authors.
We used the first three dimensions from DiffusionMap to compute pseudo-
time values. We used the E-SLAM population as the starting cell type and
computed pseudotime using Slingshot along three lineages, namely erythroid,
granulocyte-monocyte and lymphoid. We inferred GRNs for each lineage
independently.

 2. Mouse embryonic stem cells (mESC)49. This dataset contains scRNA-seq
expression measurements for 421 primitive endoderm (PrE) cells differenti-
ated from mESCs, collected at five different time points (0, 12, 24, 48 h up to
72 h). SCODE13, SINGE10 and GRISLI9 used this dataset to evaluate their per-
formance. We computed pseudotime using Slingshot with cells measured at
0 h as the starting cluster and the cells measured at 72 h as the ending cluster.

 3. Mouse dendritic cells50. This dataset corresponds to over 1,700 bone-marrow
derived dendritic cells under various conditions. Following SCRIBE19, we
used the lipopolysaccharide stimulated wildtype cells measured at 1, 2, 4 and
6 h. We then computed the pseudotime using Slingshot with cells measured at
1 h as the starting cluster and the cells measured at 6 h as the ending cluster.

 4. hHEPs51. This dataset is from an scRNA-seq experiment on induced
pluripotent stem cells (iPSCs) in two-dimensional culture differentiating to
hepatocyte-like cells. The dataset contains 425 scRNA-seq measurements
from multiple time points: days 0 (iPSCs), 6, 8, 14 and 21 (mature hepato-
cyte-like). We computed the pseudotime using Slingshot with cells measured
on day 0 (iPSCs) as the starting cluster and the cells measured on 21 (mature
hepatocytes) as the ending cluster.

 5. hESCs52. This dataset is from a time course scRNA-seq experiment derived
from 758 cells along the differentiation protocol to produce definitive
endoderm cells from human embryonic stem cells, measured at 0, 12, 24, 36,
72 and 96 h. We computed the pseudotime with cells measured at 0 h as the
starting cluster and the cells measured at 96 h as the ending cluster. SCODE13
used this dataset to evaluate its performance.

Once we obtained the pseduotime values for the cells in each dataset, we
computed which genes had varying expression values across pseudotime. We
used the general additive model implemented in the ‘gam’ R package to compute
the variance and the P value of this variance. We used the Bonferroni method
to correct for testing multiple hypotheses. Supplementary Table 3 provides the

statistics on the number of significantly varying genes and TFs in each dataset after
using a corrected P value cutoff of 0.01. We selected genes for GRN inference in
two different ways.

 i. We considered all genes with a P value less than 0.01. We selected variance
thresholds so that we obtained 500 and 1,000 highly varying genes. We
recorded the number of TFs in these sets.

 ii. We started by including all TFs whose variance had P value at most 0.01.
Then, we added 500 and 1,000 additional genes as in the previous option.
This approach enabled the GRN methods to consider TFs that may have a
modest variation in gene expression but still regulate their targets.

After applying a GRN inference algorithm to a dataset, we only considered
interactions outgoing from a TF in further evaluation.

Ground-truth networks collection and processing. In the GRN inference literature,
a common practice is to evaluate the accuracy of a resulting network by comparing
its edges to an appropriate database of TFs and their targets. For example, SCODE
used the RikenTFdb and animalTFDB resources to define ground-truth networks
for mouse and human gene expression data, respectively13. We used three types of
ground-truth dataset (Supplementary Table 4).

 1. Cell-type-specific. For each experimental scRNA-seq dataset, we searched
the ENCODE, ChIP-Atlas and ESCAPE databases for ChIP–seq data from
the same or similar cell type. We also included the loss-of-function/gain-of-
function (lof/gof) dataset from the ESCAPE database.

 2. Nonspecific. Here, we used the following resources:
(a) DoRothEA45 integrates ChIP–seq and transcriptional regulatory informa-

tion from multiple sources. We considered two levels of evidence in this
database: A (curated/high confidence) and B (likely confidence).

(b) RegNetwork43 incorporates genome-wide TF–TF, TF–gene, TF–micro
RNA regulatory relationships in human and mouse collected from various
sources. We used the TF–TF and TF–gene interactions for our analysis.

(c) TRRUST44 contains TF–target interactions collected based on text-mining
followed by manual curation for human and mouse.

 3. Functional. Finally, we used the human and mouse STRING46 networks. An
interaction here is functional and need not correspond to transcriptional reg-
ulation. We selected this type of ground-truth network due to our observation
that many GRN methods predict indirect interactions for Boolean models.

Evaluation pipeline. One of the major challenges we faced was that the GRN
inference methods we included in this evaluation were implemented in a variety
of languages such as R, MATLAB, Python, Julia and F#. To obtain an efficient
and reproducible pipeline, we Dockerized the implementation of each algorithm.
Supplementary Table 9 contains details on the specific software or GitHub commit
versions we downloaded and used in our pipeline. For methods implemented in
MATLAB, we created MATLAB executable files (.mex files) that we could execute
within a Docker container using the MATLAB Runtime. We further studied the
publications and the documentation of the software (and the source code, on
occasion) to determine how the authors recommended that their methods be used.
We implemented these suggestions as well as we could. We provide more details in
Supplementary Note 4.

Inputs. For datasets from synthetic networks and for datasets from curated models,
we provided the gene expression values obtained from the simulations directly after
optionally inducing dropouts in the second type of data. Eight out of the 12 methods
also required some form of time information for every cell in the dataset (Fig. 6).
Of these, two methods (GRNVBEM and LEAP) only required cells to be ordered
according to their pseudotime and did not require the pseudotime values themselves.

Parameter estimation. Six of the methods also required one or more parameters
to be specified. To this end, we performed parameter estimation for each of these
methods separately for datasets from synthetic networks, datasets from curated
models and real datasets, and provided them with the parameters that resulted in
the best AUPRC values. See Supplementary Note 1.2 for details.

Output processing. Ten of the GRN inference methods output a confidence score for
every possible edge in the network, either as an edge list or as an adjacency matrix,
which we converted to a ranked edge list. We gave the same rank to edges with the
same confidence scores.

Performance evaluation. We used a common evaluation pipeline across all the
datasets considered in this paper. We evaluated the result of each algorithm using
the following criteria:

 1. AUPRC, AUROC. We computed areas under the precision-recall and receiver
operating characteristic curves using the edges in the relevant network as
ground truth and ranked edges from each method as the predictions. We
ignored self-loops for this analysis since some methods such as PPCOR
always assigned the highest rank to such edges and some other methods such
as SINGE always ignored them. Most of the networks we considered have a

NATuRe MeThods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

AnAlysisNATuRE METhods

density of 0.3 or less; that is, the positive-to-negative ratio is worse than 1:3.
Since the GRN inference problem for these networks is moderately imbal-
anced, we focus on AUPRC scores in the main text53,54. For readers who are
interested in AUROC plots, we provide them as supplementary figures (only
for the synthetic networks and curated models).

 2. Stability across multiple runs. We executed each algorithm ten times on a
dataset to ask if the inferred networks changed from one run to another. We
represented every result by the corresponding ranked list of edges. For every
pair of results, we computed the Spearman’s correlation of the ranked lists.
We performed this analysis for curated models and for experimental datasets.

 3. Identifying top-k edges. We first identified top-k edges for each method,
where k equaled the number of edges in the ground-truth network (exclud-
ing self-loops). In cases where multiple edges were tied for a rank of k, we
considered all of them. If a method provided a confidence score for fewer
than k edges, we used only those edges. For experimental single-cell RNA-seq
datasets, this number varied from one ground-truth dataset to another.

 4. Stability across multiple datasets. For each method, once we obtained the set
of top-k edges for each dataset, we then computed the Jaccard index of every
pair of these sets. We used the median of the values as an indication of the
robustness of a method’s output to variations in the simulated datasets from a
given synthetic network or curated model.

 5. Early precision (EP) and EPR. We defined early precision as the fraction of
true positives in the top-k edges. We also computed the EPR, which repre-
sents the ratio of early precision value and the early precision for a random
predictor for that model. A random predictor’s precision is the edge density
of the ground-truth network.

 6. Early precision of signed edges. We desired to check whether there were any
differences in how accurately a GRN inference algorithm identified activating
edges in comparison to inhibitory edges. To this end, we computed the top-ka
edges from the ranked list of edges output by each method, where ka is the
number of activating edges in the ground-truth network. In this step, we ig-
nored any inhibitory edges in the ground-truth network. We defined the early
precision of activating edges as the fraction of true edges of this type in the
top-ka edges. We used an analogous approach to compute early precision of
inhibitory edges. We also computed the EPR for these values. We performed
this analysis only for curated models.

Datasets with multiple trajectories. Seven methods we evaluated require
pseudotime-ordered cells (Fig. 6), but cannot directly handle data with branched
trajectories. In these cases, as suggested by many of these methods, we separated
the cells into multiple linear trajectories using Slingshot and applied the algorithm
to the set of cells in each trajectory individually. To combine the GRNs, for each
interaction, we recorded the largest score for it across all the networks and ranked
the interactions by these values. In the case of GRISLI, which outputs ranked edges,
for each interaction, we took the best (smallest) rank for it across all the networks.

As an alternative, we merged all the trajectories into one set of cells and
executed each algorithm on this dataset. We performed this analysis for the three
synthetic networks with multiple trajectories (bifurcating, bifurcating converging
and trifurcating).

Shuffling simulation times. We investigated the effect of shuffling the pseudotime
values on the performance of methods that require this information. We
used three window sizes, namely, 15, 30 and 45%, which defined the range of
indices to sample from as a fraction of the total number of cells in a dataset.
Thus, for a dataset with 2,000 cells, using a window size of 30% resulted in a
range of 2,000 × 0.3 = 600. Therefore, after sorting the cells in increasing order
of pseudotime, for every index i, we sampled a new index from the interval
[max(0,i − 300),min(i + 300,2,000)] and swapped the cells at these two indices.
We performed this analysis for the three synthetic networks with a single trajectory
(linear, cycle and Linear long). Here each original (unshuffled) pseudotime was
equal to the simulation time.

Procedure for creating Fig. 6. We chose the following measures presented in earlier
sections for summarize our key findings:

Accuracy. We computed the median of the per-network median AUPRC value
obtained for datasets containing 2,000 and 5,000 cells for the six synthetic networks
(Fig. 2). For datasets from curated models, we used the median of the per-model
median AUPRC value obtained for ten datasets without dropouts for each the
four datasets from curated models (Fig. 4). For experimental single-cell RNA-seq
datasets, we used the median EPR obtained for each dataset-evaluation network
combination (all significantly varying TFs and the 500 most-varying genes) (Fig. 5).
We have ordered the algorithms by their median EPR score across experimental
single-cell RNA-seq datasets followed by median AUPRCs in datasets from
synthetic networks.

Stability. We present four such measures: (1) across datasets: the median score
of the Jaccard index obtained for all six datasets from synthetic networks (Fig. 2);
(2) across runs: median Spearman’s correlation of outputs for each of the four

datasets from curated models (one dataset each, Supplementary Note 3.4);
(3) across dropouts: median percentage decrease in AUPRC for the q = 50 dropout
rate compared to no dropouts (Supplementary Fig. 4) and (4) across pseudotime:
median percentage decrease in AUPRC after shuffling time values within a 30%
window compared to the original simulation time for datasets from synthetic
networks (Supplementary Fig. 11).

Scalability. Median running times and memory consumption for three different
scRNA-seq datasets, namely hHEP, hESC and mHSC-E, which contain 400, 750
and 1,000 cells, respectively (Supplementary Fig. 7). Missing values indicate that
either the method did not complete even after running for over a day or it gave a
runtime error.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

data availability
The datasets simulated from the synthetic networks and curated models and
the processed experimental single-cell gene expression datasets are available
on Zenodo at https://doi.org/10.5281/zenodo.3378975. The gene experimental
scRNA-seq datasets we downloaded from Gene Expression Omnibus had the
accession numbers GSE81252 (hHEP), GSE75748 (hESC), GSE98664 (mESC),
GSE48968 (mouse dendritic cell) and GSE81682 (mHSC). Source data for Figs. 2
and 4–6 are provided with the paper.

Code availability
A Python implementation of the BEELINE framework is available under the GNU
General Public License v.3 at https://github.com/murali-group/BEELINE.

References
 35. Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli

transcriptional regulation from a compendium of expression profiles.
PLoS Biol. 5, e8 (2007).

 36. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
 37. Yuan, Y. & Bar-Joseph, Z. Deep learning for inferring gene relationships from

single-cell expression data. Preprint at bioRxiv https://doi.org/10.1101/365007
(2019).

 38. Chen, H. et al. Single-cell transcriptional analysis to uncover regulatory
circuits driving cell fate decisions in early mouse development. Bioinformatics
31, 1060–1066 (2015).

 39. Hamey, F. K. et al. Reconstructing blood stem cell regulatory network
models from single-cell molecular profiles. Proc. Natl Acad. Sci. USA 114,
5822–5829 (2017).

 40. Marbach, D., Schaffter, T., Mattiussi, C. & Floreano, D. Generating realistic in
silico gene networks for performance assessment of reverse engineering
methods. J. Comput. Biol. 16, 229–239 (2009).

 41. Marbach, D. et al. Revealing strengths and weaknesses of methods for gene
network inference. Proc. Natl Acad. Sci. USA 107, 6286–6291 (2010).

 42. Ackers, G. K., Johnson, A. D. & Shea, M. A. Quantitative model for
gene regulation by λ phage repressor. Proc. Natl Acad. Sci. USA 79,
1129–1133 (1982).

 43. Liu, Z. P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database
of transcriptional and post-transcriptional regulatory networks in human
and mouse. Database 2015, bav095 (2015).

 44. Han, H. et al. TRRUST v2: an expanded reference database of human and
mouse transcriptional regulatory interactions. Nucleic Acids Res. 46,
D380–D386 (2018).

 45. Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. &
Saez-Rodriguez, J. Benchmark and integration of resources for the
estimation of human transcription factor activities. Genome Res. 29,
1363–1375 (2019).

 46. Szklarczyk, D. et al. STRING v11: protein–protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47, 607–613 (2018).

 47. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq
experiments. Nat. Methods 10, 1093–1095 (2013).

 48. Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem
and progenitor cell differentiation. Blood 128, 20–31 (2016).

 49. Hayashi, T. et al. Single-cell full-length total RNA sequencing uncovers
dynamics of recursive splicing and enhancer RNAs. Nat. Commun. 9,
619 (2018).

 50. Shalek, A. K. et al. Single-cell RNA-seq reveals dynamic paracrine control of
cellular variation. Nature 510, 363–369 (2014).

 51. Camp, J. G. et al. Multilineage communication regulates human liver bud
development from pluripotency. Nature 546, 533–538 (2017).

 52. Chu, L. F. et al. Single-cell RNA-seq reveals novel regulators of human
embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17,
173 (2016).

NATuRe MeThods | www.nature.com/naturemethods

https://doi.org/10.5281/zenodo.3378975
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81252
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75748
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98664
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48968
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81682
https://github.com/murali-group/BEELINE
https://doi.org/10.1101/365007
http://www.nature.com/naturemethods

AnAlysis NATuRE METhods

 53. Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative
than the ROC plot when evaluating binary classifiers on imbalanced datasets.
PLoS One 10, e0118432 (2015).

 54. Saito, T. & Rehmsmeier, M. Precrec: fast and accurate precision-recall and
ROC curve calculations in R. Bioinformatics 33, 145–147 (2017).

Acknowledgements
Grants from the National Science Foundation (nos. CCF-1617678 and DBI-1759858)
and the National Cancer Institute (grant no. UH2CA203768) supported this work.
The research is also based on work supported by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via the
Army Research Office (ARO) under cooperative agreement no. W911NF-17-2-0105.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the ODNI, IARPA, ARO or the US Government. The US
Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The funding bodies
played no role in the design of the study, the collection, analysis and interpretation
of data or in writing the manuscript.

Author contributions
A.P. and T.M.M. conceived and designed the analysis and selected the GRN algorithms.
A.P. implemented BEELINE and led the analysis. A.P.J., A.P. and T.M.M. developed
BoolODE and A.P.J. implemented it. A.P. and A.P.J. created and processed datasets. A.P.,
A.P.J., J.N.L. and A.B. contributed evaluation strategies. All authors analyzed the results.
A.P., A.P.J. and T.M.M. wrote the paper. T.M.M. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-019-0690-6.

Correspondence and requests for materials should be addressed to T.M.M.

Peer review information Nicole Rusk and Lin Tang were the primary editors on this
article and managed its editorial process and peer review in collaboration with the rest of
the editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

NATuRe MeThods | www.nature.com/naturemethods

https://doi.org/10.1038/s41592-019-0690-6
https://doi.org/10.1038/s41592-019-0690-6
http://www.nature.com/reprints
http://www.nature.com/naturemethods

	Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data
	Results
	Overview of algorithms.
	Datasets from synthetic networks.
	Datasets from curated models.
	Experimental single-cell RNA-seq datasets.

	Discussion
	Online content
	Fig. 1 An overview of the BEELINE evaluation framework.
	Fig. 2 Summary of results for datasets from synthetic networks.
	Fig. 3 Visualization of t-SNE projections of simulations reveals trajectories leading to steady states that correspond to those of the curated models.
	Fig. 4 Summary of results for ten datasets without dropouts from curated models.
	Fig. 5 Summary of EPR results for experimental single-cell RNA-seq datasets.
	Fig. 6 Summary of properties of GRN inference algorithms and results obtained from BEELINE.

